| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcco.b |
|- B = ( Base ` D ) |
| 2 |
|
funcco.h |
|- H = ( Hom ` D ) |
| 3 |
|
funcco.o |
|- .x. = ( comp ` D ) |
| 4 |
|
funcco.O |
|- O = ( comp ` E ) |
| 5 |
|
funcco.f |
|- ( ph -> F ( D Func E ) G ) |
| 6 |
|
funcco.x |
|- ( ph -> X e. B ) |
| 7 |
|
funcco.y |
|- ( ph -> Y e. B ) |
| 8 |
|
funcco.z |
|- ( ph -> Z e. B ) |
| 9 |
|
funcco.m |
|- ( ph -> M e. ( X H Y ) ) |
| 10 |
|
funcco.n |
|- ( ph -> N e. ( Y H Z ) ) |
| 11 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 12 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 13 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 14 |
|
eqid |
|- ( Id ` E ) = ( Id ` E ) |
| 15 |
|
df-br |
|- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
| 16 |
5 15
|
sylib |
|- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 17 |
|
funcrcl |
|- ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
| 19 |
18
|
simpld |
|- ( ph -> D e. Cat ) |
| 20 |
18
|
simprd |
|- ( ph -> E e. Cat ) |
| 21 |
1 11 2 12 13 14 3 4 19 20
|
isfunc |
|- ( ph -> ( F ( D Func E ) G <-> ( F : B --> ( Base ` E ) /\ G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` E ) ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) /\ A. x e. B ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) ) ) |
| 22 |
5 21
|
mpbid |
|- ( ph -> ( F : B --> ( Base ` E ) /\ G e. X_ z e. ( B X. B ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` E ) ( F ` ( 2nd ` z ) ) ) ^m ( H ` z ) ) /\ A. x e. B ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) ) |
| 23 |
22
|
simp3d |
|- ( ph -> A. x e. B ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) |
| 24 |
7
|
adantr |
|- ( ( ph /\ x = X ) -> Y e. B ) |
| 25 |
8
|
ad2antrr |
|- ( ( ( ph /\ x = X ) /\ y = Y ) -> Z e. B ) |
| 26 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> M e. ( X H Y ) ) |
| 27 |
|
simpllr |
|- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> x = X ) |
| 28 |
|
simplr |
|- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> y = Y ) |
| 29 |
27 28
|
oveq12d |
|- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> ( x H y ) = ( X H Y ) ) |
| 30 |
26 29
|
eleqtrrd |
|- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> M e. ( x H y ) ) |
| 31 |
10
|
ad4antr |
|- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) -> N e. ( Y H Z ) ) |
| 32 |
|
simpllr |
|- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) -> y = Y ) |
| 33 |
|
simplr |
|- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) -> z = Z ) |
| 34 |
32 33
|
oveq12d |
|- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) -> ( y H z ) = ( Y H Z ) ) |
| 35 |
31 34
|
eleqtrrd |
|- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) -> N e. ( y H z ) ) |
| 36 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> x = X ) |
| 37 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> z = Z ) |
| 38 |
36 37
|
oveq12d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( x G z ) = ( X G Z ) ) |
| 39 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> y = Y ) |
| 40 |
36 39
|
opeq12d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> <. x , y >. = <. X , Y >. ) |
| 41 |
40 37
|
oveq12d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( <. x , y >. .x. z ) = ( <. X , Y >. .x. Z ) ) |
| 42 |
|
simpr |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> n = N ) |
| 43 |
|
simplr |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> m = M ) |
| 44 |
41 42 43
|
oveq123d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( n ( <. x , y >. .x. z ) m ) = ( N ( <. X , Y >. .x. Z ) M ) ) |
| 45 |
38 44
|
fveq12d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) ) |
| 46 |
36
|
fveq2d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( F ` x ) = ( F ` X ) ) |
| 47 |
39
|
fveq2d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( F ` y ) = ( F ` Y ) ) |
| 48 |
46 47
|
opeq12d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> <. ( F ` x ) , ( F ` y ) >. = <. ( F ` X ) , ( F ` Y ) >. ) |
| 49 |
37
|
fveq2d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( F ` z ) = ( F ` Z ) ) |
| 50 |
48 49
|
oveq12d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) = ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ) |
| 51 |
39 37
|
oveq12d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( y G z ) = ( Y G Z ) ) |
| 52 |
51 42
|
fveq12d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( ( y G z ) ` n ) = ( ( Y G Z ) ` N ) ) |
| 53 |
36 39
|
oveq12d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( x G y ) = ( X G Y ) ) |
| 54 |
53 43
|
fveq12d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( ( x G y ) ` m ) = ( ( X G Y ) ` M ) ) |
| 55 |
50 52 54
|
oveq123d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) |
| 56 |
45 55
|
eqeq12d |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) /\ n = N ) -> ( ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) <-> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 57 |
35 56
|
rspcdv |
|- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ m = M ) -> ( A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 58 |
30 57
|
rspcimdv |
|- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> ( A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 59 |
25 58
|
rspcimdv |
|- ( ( ( ph /\ x = X ) /\ y = Y ) -> ( A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 60 |
24 59
|
rspcimdv |
|- ( ( ph /\ x = X ) -> ( A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 61 |
60
|
adantld |
|- ( ( ph /\ x = X ) -> ( ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) ) -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 62 |
6 61
|
rspcimdv |
|- ( ph -> ( A. x e. B ( ( ( x G x ) ` ( ( Id ` D ) ` x ) ) = ( ( Id ` E ) ` ( F ` x ) ) /\ A. y e. B A. z e. B A. m e. ( x H y ) A. n e. ( y H z ) ( ( x G z ) ` ( n ( <. x , y >. .x. z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. O ( F ` z ) ) ( ( x G y ) ` m ) ) ) -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) ) |
| 63 |
23 62
|
mpd |
|- ( ph -> ( ( X G Z ) ` ( N ( <. X , Y >. .x. Z ) M ) ) = ( ( ( Y G Z ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` M ) ) ) |