Step |
Hyp |
Ref |
Expression |
1 |
|
upcic.b |
|- B = ( Base ` D ) |
2 |
|
upcic.c |
|- C = ( Base ` E ) |
3 |
|
upcic.h |
|- H = ( Hom ` D ) |
4 |
|
upcic.j |
|- J = ( Hom ` E ) |
5 |
|
upcic.o |
|- O = ( comp ` E ) |
6 |
|
upcic.f |
|- ( ph -> F ( D Func E ) G ) |
7 |
|
upcic.x |
|- ( ph -> X e. B ) |
8 |
|
upcic.y |
|- ( ph -> Y e. B ) |
9 |
|
upcic.z |
|- ( ph -> Z e. C ) |
10 |
|
upcic.m |
|- ( ph -> M e. ( Z J ( F ` X ) ) ) |
11 |
|
upcic.1 |
|- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w ) f = ( ( ( X G w ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) |
12 |
|
upciclem3.od |
|- .x. = ( comp ` D ) |
13 |
|
upciclem3.k |
|- ( ph -> K e. ( X H Y ) ) |
14 |
|
upciclem3.l |
|- ( ph -> L e. ( Y H X ) ) |
15 |
|
upciclem3.mn |
|- ( ph -> M = ( ( ( Y G X ) ` L ) ( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) |
16 |
|
upciclem3.nm |
|- ( ph -> N = ( ( ( X G Y ) ` K ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
17 |
|
fveq2 |
|- ( p = ( L ( <. X , Y >. .x. X ) K ) -> ( ( X G X ) ` p ) = ( ( X G X ) ` ( L ( <. X , Y >. .x. X ) K ) ) ) |
18 |
17
|
oveq1d |
|- ( p = ( L ( <. X , Y >. .x. X ) K ) -> ( ( ( X G X ) ` p ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) = ( ( ( X G X ) ` ( L ( <. X , Y >. .x. X ) K ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) |
19 |
18
|
eqeq2d |
|- ( p = ( L ( <. X , Y >. .x. X ) K ) -> ( M = ( ( ( X G X ) ` p ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) <-> M = ( ( ( X G X ) ` ( L ( <. X , Y >. .x. X ) K ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) ) |
20 |
|
fveq2 |
|- ( p = ( ( Id ` D ) ` X ) -> ( ( X G X ) ` p ) = ( ( X G X ) ` ( ( Id ` D ) ` X ) ) ) |
21 |
20
|
oveq1d |
|- ( p = ( ( Id ` D ) ` X ) -> ( ( ( X G X ) ` p ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) = ( ( ( X G X ) ` ( ( Id ` D ) ` X ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) |
22 |
21
|
eqeq2d |
|- ( p = ( ( Id ` D ) ` X ) -> ( M = ( ( ( X G X ) ` p ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) <-> M = ( ( ( X G X ) ` ( ( Id ` D ) ` X ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) ) |
23 |
11 7 10
|
upciclem1 |
|- ( ph -> E! p e. ( X H X ) M = ( ( ( X G X ) ` p ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) |
24 |
6
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
25 |
1 3 12 24 7 8 7 13 14
|
catcocl |
|- ( ph -> ( L ( <. X , Y >. .x. X ) K ) e. ( X H X ) ) |
26 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
27 |
1 3 26 24 7
|
catidcl |
|- ( ph -> ( ( Id ` D ) ` X ) e. ( X H X ) ) |
28 |
1 2 3 4 5 6 7 8 7 9 10 12 13 14 16
|
upciclem2 |
|- ( ph -> ( ( ( X G X ) ` ( L ( <. X , Y >. .x. X ) K ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) = ( ( ( Y G X ) ` L ) ( <. Z , ( F ` Y ) >. O ( F ` X ) ) N ) ) |
29 |
15 28
|
eqtr4d |
|- ( ph -> M = ( ( ( X G X ) ` ( L ( <. X , Y >. .x. X ) K ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) |
30 |
|
eqid |
|- ( Id ` E ) = ( Id ` E ) |
31 |
1 26 30 6 7
|
funcid |
|- ( ph -> ( ( X G X ) ` ( ( Id ` D ) ` X ) ) = ( ( Id ` E ) ` ( F ` X ) ) ) |
32 |
31
|
oveq1d |
|- ( ph -> ( ( ( X G X ) ` ( ( Id ` D ) ` X ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) = ( ( ( Id ` E ) ` ( F ` X ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) |
33 |
6
|
funcrcl3 |
|- ( ph -> E e. Cat ) |
34 |
1 2 6
|
funcf1 |
|- ( ph -> F : B --> C ) |
35 |
34 7
|
ffvelcdmd |
|- ( ph -> ( F ` X ) e. C ) |
36 |
2 4 30 33 9 5 35 10
|
catlid |
|- ( ph -> ( ( ( Id ` E ) ` ( F ` X ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) = M ) |
37 |
32 36
|
eqtr2d |
|- ( ph -> M = ( ( ( X G X ) ` ( ( Id ` D ) ` X ) ) ( <. Z , ( F ` X ) >. O ( F ` X ) ) M ) ) |
38 |
19 22 23 25 27 29 37
|
reu2eqd |
|- ( ph -> ( L ( <. X , Y >. .x. X ) K ) = ( ( Id ` D ) ` X ) ) |