Metamath Proof Explorer


Theorem funcrcl2

Description: Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025)

Ref Expression
Hypothesis funcrcl2.f
|- ( ph -> F ( D Func E ) G )
Assertion funcrcl2
|- ( ph -> D e. Cat )

Proof

Step Hyp Ref Expression
1 funcrcl2.f
 |-  ( ph -> F ( D Func E ) G )
2 df-br
 |-  ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) )
3 2 biimpi
 |-  ( F ( D Func E ) G -> <. F , G >. e. ( D Func E ) )
4 funcrcl
 |-  ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) )
5 1 3 4 3syl
 |-  ( ph -> ( D e. Cat /\ E e. Cat ) )
6 5 simpld
 |-  ( ph -> D e. Cat )