Metamath Proof Explorer


Theorem funcrcl3

Description: Reverse closure for a functor. (Contributed by Zhi Wang, 17-Sep-2025)

Ref Expression
Hypothesis funcrcl2.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
Assertion funcrcl3 ( 𝜑𝐸 ∈ Cat )

Proof

Step Hyp Ref Expression
1 funcrcl2.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
2 df-br ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
3 2 biimpi ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) )
4 funcrcl ( ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) )
5 1 3 4 3syl ( 𝜑 → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) )
6 5 simprd ( 𝜑𝐸 ∈ Cat )