Step |
Hyp |
Ref |
Expression |
1 |
|
upcic.b |
|- B = ( Base ` D ) |
2 |
|
upcic.c |
|- C = ( Base ` E ) |
3 |
|
upcic.h |
|- H = ( Hom ` D ) |
4 |
|
upcic.j |
|- J = ( Hom ` E ) |
5 |
|
upcic.o |
|- O = ( comp ` E ) |
6 |
|
upcic.f |
|- ( ph -> F ( D Func E ) G ) |
7 |
|
upcic.x |
|- ( ph -> X e. B ) |
8 |
|
upcic.y |
|- ( ph -> Y e. B ) |
9 |
|
upcic.z |
|- ( ph -> Z e. C ) |
10 |
|
upcic.m |
|- ( ph -> M e. ( Z J ( F ` X ) ) ) |
11 |
|
upcic.1 |
|- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w ) f = ( ( ( X G w ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) |
12 |
|
upcic.n |
|- ( ph -> N e. ( Z J ( F ` Y ) ) ) |
13 |
|
upcic.2 |
|- ( ph -> A. v e. B A. g e. ( Z J ( F ` v ) ) E! l e. ( Y H v ) g = ( ( ( Y G v ) ` l ) ( <. Z , ( F ` Y ) >. O ( F ` v ) ) N ) ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
upciclem4 |
|- ( ph -> ( X ( ~=c ` D ) Y /\ E. r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) ) |
15 |
14
|
simprd |
|- ( ph -> E. r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
16 |
|
eqid |
|- ( Iso ` D ) = ( Iso ` D ) |
17 |
6
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
18 |
1 3 16 17 7 8
|
isohom |
|- ( ph -> ( X ( Iso ` D ) Y ) C_ ( X H Y ) ) |
19 |
11 8 12
|
upciclem1 |
|- ( ph -> E! r e. ( X H Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
20 |
|
reurmo |
|- ( E! r e. ( X H Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) -> E* r e. ( X H Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
21 |
19 20
|
syl |
|- ( ph -> E* r e. ( X H Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
22 |
|
nfcv |
|- F/_ r ( X ( Iso ` D ) Y ) |
23 |
|
nfcv |
|- F/_ r ( X H Y ) |
24 |
22 23
|
ssrmof |
|- ( ( X ( Iso ` D ) Y ) C_ ( X H Y ) -> ( E* r e. ( X H Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) -> E* r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) ) |
25 |
18 21 24
|
sylc |
|- ( ph -> E* r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
26 |
|
reu5 |
|- ( E! r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) <-> ( E. r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) /\ E* r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) ) |
27 |
15 25 26
|
sylanbrc |
|- ( ph -> E! r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) |