| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isohom.b |
|- B = ( Base ` C ) |
| 2 |
|
isohom.h |
|- H = ( Hom ` C ) |
| 3 |
|
isohom.i |
|- I = ( Iso ` C ) |
| 4 |
|
isohom.c |
|- ( ph -> C e. Cat ) |
| 5 |
|
isohom.x |
|- ( ph -> X e. B ) |
| 6 |
|
isohom.y |
|- ( ph -> Y e. B ) |
| 7 |
|
eqid |
|- ( Inv ` C ) = ( Inv ` C ) |
| 8 |
1 7 4 5 6 3
|
isoval |
|- ( ph -> ( X I Y ) = dom ( X ( Inv ` C ) Y ) ) |
| 9 |
1 7 4 5 6 2
|
invss |
|- ( ph -> ( X ( Inv ` C ) Y ) C_ ( ( X H Y ) X. ( Y H X ) ) ) |
| 10 |
|
dmss |
|- ( ( X ( Inv ` C ) Y ) C_ ( ( X H Y ) X. ( Y H X ) ) -> dom ( X ( Inv ` C ) Y ) C_ dom ( ( X H Y ) X. ( Y H X ) ) ) |
| 11 |
9 10
|
syl |
|- ( ph -> dom ( X ( Inv ` C ) Y ) C_ dom ( ( X H Y ) X. ( Y H X ) ) ) |
| 12 |
8 11
|
eqsstrd |
|- ( ph -> ( X I Y ) C_ dom ( ( X H Y ) X. ( Y H X ) ) ) |
| 13 |
|
dmxpss |
|- dom ( ( X H Y ) X. ( Y H X ) ) C_ ( X H Y ) |
| 14 |
12 13
|
sstrdi |
|- ( ph -> ( X I Y ) C_ ( X H Y ) ) |