Metamath Proof Explorer


Theorem isoco

Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses isoco.b
|- B = ( Base ` C )
isoco.o
|- .x. = ( comp ` C )
isoco.n
|- I = ( Iso ` C )
isoco.c
|- ( ph -> C e. Cat )
isoco.x
|- ( ph -> X e. B )
isoco.y
|- ( ph -> Y e. B )
isoco.z
|- ( ph -> Z e. B )
isoco.f
|- ( ph -> F e. ( X I Y ) )
isoco.g
|- ( ph -> G e. ( Y I Z ) )
Assertion isoco
|- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) e. ( X I Z ) )

Proof

Step Hyp Ref Expression
1 isoco.b
 |-  B = ( Base ` C )
2 isoco.o
 |-  .x. = ( comp ` C )
3 isoco.n
 |-  I = ( Iso ` C )
4 isoco.c
 |-  ( ph -> C e. Cat )
5 isoco.x
 |-  ( ph -> X e. B )
6 isoco.y
 |-  ( ph -> Y e. B )
7 isoco.z
 |-  ( ph -> Z e. B )
8 isoco.f
 |-  ( ph -> F e. ( X I Y ) )
9 isoco.g
 |-  ( ph -> G e. ( Y I Z ) )
10 eqid
 |-  ( Inv ` C ) = ( Inv ` C )
11 1 10 4 5 6 3 8 2 7 9 invco
 |-  ( ph -> ( G ( <. X , Y >. .x. Z ) F ) ( X ( Inv ` C ) Z ) ( ( ( X ( Inv ` C ) Y ) ` F ) ( <. Z , Y >. .x. X ) ( ( Y ( Inv ` C ) Z ) ` G ) ) )
12 1 10 4 5 7 3 11 inviso1
 |-  ( ph -> ( G ( <. X , Y >. .x. Z ) F ) e. ( X I Z ) )