Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isoco.b | |- B = ( Base ` C ) |
|
isoco.o | |- .x. = ( comp ` C ) |
||
isoco.n | |- I = ( Iso ` C ) |
||
isoco.c | |- ( ph -> C e. Cat ) |
||
isoco.x | |- ( ph -> X e. B ) |
||
isoco.y | |- ( ph -> Y e. B ) |
||
isoco.z | |- ( ph -> Z e. B ) |
||
isoco.f | |- ( ph -> F e. ( X I Y ) ) |
||
isoco.g | |- ( ph -> G e. ( Y I Z ) ) |
||
Assertion | isoco | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) e. ( X I Z ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isoco.b | |- B = ( Base ` C ) |
|
2 | isoco.o | |- .x. = ( comp ` C ) |
|
3 | isoco.n | |- I = ( Iso ` C ) |
|
4 | isoco.c | |- ( ph -> C e. Cat ) |
|
5 | isoco.x | |- ( ph -> X e. B ) |
|
6 | isoco.y | |- ( ph -> Y e. B ) |
|
7 | isoco.z | |- ( ph -> Z e. B ) |
|
8 | isoco.f | |- ( ph -> F e. ( X I Y ) ) |
|
9 | isoco.g | |- ( ph -> G e. ( Y I Z ) ) |
|
10 | eqid | |- ( Inv ` C ) = ( Inv ` C ) |
|
11 | 1 10 4 5 6 3 8 2 7 9 | invco | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) ( X ( Inv ` C ) Z ) ( ( ( X ( Inv ` C ) Y ) ` F ) ( <. Z , Y >. .x. X ) ( ( Y ( Inv ` C ) Z ) ` G ) ) ) |
12 | 1 10 4 5 7 3 11 | inviso1 | |- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) e. ( X I Z ) ) |