Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isoco.b | |
|
isoco.o | |
||
isoco.n | |
||
isoco.c | |
||
isoco.x | |
||
isoco.y | |
||
isoco.z | |
||
isoco.f | |
||
isoco.g | |
||
Assertion | isoco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isoco.b | |
|
2 | isoco.o | |
|
3 | isoco.n | |
|
4 | isoco.c | |
|
5 | isoco.x | |
|
6 | isoco.y | |
|
7 | isoco.z | |
|
8 | isoco.f | |
|
9 | isoco.g | |
|
10 | eqid | |
|
11 | 1 10 4 5 6 3 8 2 7 9 | invco | |
12 | 1 10 4 5 7 3 11 | inviso1 | |