Metamath Proof Explorer


Theorem isoco

Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses isoco.b B=BaseC
isoco.o ·˙=compC
isoco.n I=IsoC
isoco.c φCCat
isoco.x φXB
isoco.y φYB
isoco.z φZB
isoco.f φFXIY
isoco.g φGYIZ
Assertion isoco φGXY·˙ZFXIZ

Proof

Step Hyp Ref Expression
1 isoco.b B=BaseC
2 isoco.o ·˙=compC
3 isoco.n I=IsoC
4 isoco.c φCCat
5 isoco.x φXB
6 isoco.y φYB
7 isoco.z φZB
8 isoco.f φFXIY
9 isoco.g φGYIZ
10 eqid InvC=InvC
11 1 10 4 5 6 3 8 2 7 9 invco φGXY·˙ZFXInvCZXInvCYFZY·˙XYInvCZG
12 1 10 4 5 7 3 11 inviso1 φGXY·˙ZFXIZ