Step |
Hyp |
Ref |
Expression |
1 |
|
isoco.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
isoco.o |
⊢ · = ( comp ‘ 𝐶 ) |
3 |
|
isoco.n |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
4 |
|
isoco.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
isoco.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
isoco.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
isoco.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
|
isoco.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |
9 |
|
isoco.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐼 𝑍 ) ) |
10 |
|
eqid |
⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) |
11 |
1 10 4 5 6 3 8 2 7 9
|
invco |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 ( Inv ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) ( ( 𝑌 ( Inv ‘ 𝐶 ) 𝑍 ) ‘ 𝐺 ) ) ) |
12 |
1 10 4 5 7 3 11
|
inviso1 |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐼 𝑍 ) ) |