Step |
Hyp |
Ref |
Expression |
1 |
|
oppcsect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
oppcsect.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
3 |
|
oppcsect.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
oppcsect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
oppcsect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
oppcsect.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
7 |
|
oppcsect.t |
⊢ 𝑇 = ( Sect ‘ 𝑂 ) |
8 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑌 ∈ 𝐵 ) |
11 |
1 8 2 9 10 9
|
oppcco |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐶 ∈ Cat ) |
13 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
14 |
2 13
|
oppcid |
⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
15 |
12 14
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
16 |
15
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
17 |
11 16
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ↔ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
18 |
17
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ↔ ( ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
19 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ) |
20 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
21 |
20 2
|
oppchom |
⊢ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) = ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) |
22 |
21
|
eleq2i |
⊢ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ↔ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
23 |
20 2
|
oppchom |
⊢ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) |
24 |
23
|
eleq2i |
⊢ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ↔ 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
25 |
22 24
|
anbi12ci |
⊢ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) ↔ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) |
26 |
25
|
anbi1i |
⊢ ( ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ↔ ( ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ) |
27 |
19 26
|
bitri |
⊢ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ↔ ( ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ) |
28 |
|
df-3an |
⊢ ( ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
29 |
18 27 28
|
3bitr4g |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ↔ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
30 |
2 1
|
oppcbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
31 |
|
eqid |
⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) |
32 |
|
eqid |
⊢ ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) |
33 |
|
eqid |
⊢ ( Id ‘ 𝑂 ) = ( Id ‘ 𝑂 ) |
34 |
2
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
35 |
3 34
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
36 |
30 31 32 33 7 35 4 5
|
issect |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑇 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑂 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) ) ) ) |
37 |
1 20 8 13 6 3 4 5
|
issect |
⊢ ( 𝜑 → ( 𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
38 |
29 36 37
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑇 𝑌 ) 𝐺 ↔ 𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 ) ) |