Step |
Hyp |
Ref |
Expression |
1 |
|
issect.b |
โข ๐ต = ( Base โ ๐ถ ) |
2 |
|
issect.h |
โข ๐ป = ( Hom โ ๐ถ ) |
3 |
|
issect.o |
โข ยท = ( comp โ ๐ถ ) |
4 |
|
issect.i |
โข 1 = ( Id โ ๐ถ ) |
5 |
|
issect.s |
โข ๐ = ( Sect โ ๐ถ ) |
6 |
|
issect.c |
โข ( ๐ โ ๐ถ โ Cat ) |
7 |
|
issect.x |
โข ( ๐ โ ๐ โ ๐ต ) |
8 |
|
issect.y |
โข ( ๐ โ ๐ โ ๐ต ) |
9 |
1 2 3 4 5 6 7 8
|
sectfval |
โข ( ๐ โ ( ๐ ๐ ๐ ) = { โจ ๐ , ๐ โฉ โฃ ( ( ๐ โ ( ๐ ๐ป ๐ ) โง ๐ โ ( ๐ ๐ป ๐ ) ) โง ( ๐ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐ ) = ( 1 โ ๐ ) ) } ) |
10 |
9
|
breqd |
โข ( ๐ โ ( ๐น ( ๐ ๐ ๐ ) ๐บ โ ๐น { โจ ๐ , ๐ โฉ โฃ ( ( ๐ โ ( ๐ ๐ป ๐ ) โง ๐ โ ( ๐ ๐ป ๐ ) ) โง ( ๐ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐ ) = ( 1 โ ๐ ) ) } ๐บ ) ) |
11 |
|
oveq12 |
โข ( ( ๐ = ๐บ โง ๐ = ๐น ) โ ( ๐ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐ ) = ( ๐บ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐น ) ) |
12 |
11
|
ancoms |
โข ( ( ๐ = ๐น โง ๐ = ๐บ ) โ ( ๐ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐ ) = ( ๐บ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐น ) ) |
13 |
12
|
eqeq1d |
โข ( ( ๐ = ๐น โง ๐ = ๐บ ) โ ( ( ๐ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐ ) = ( 1 โ ๐ ) โ ( ๐บ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐น ) = ( 1 โ ๐ ) ) ) |
14 |
|
eqid |
โข { โจ ๐ , ๐ โฉ โฃ ( ( ๐ โ ( ๐ ๐ป ๐ ) โง ๐ โ ( ๐ ๐ป ๐ ) ) โง ( ๐ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐ ) = ( 1 โ ๐ ) ) } = { โจ ๐ , ๐ โฉ โฃ ( ( ๐ โ ( ๐ ๐ป ๐ ) โง ๐ โ ( ๐ ๐ป ๐ ) ) โง ( ๐ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐ ) = ( 1 โ ๐ ) ) } |
15 |
13 14
|
brab2a |
โข ( ๐น { โจ ๐ , ๐ โฉ โฃ ( ( ๐ โ ( ๐ ๐ป ๐ ) โง ๐ โ ( ๐ ๐ป ๐ ) ) โง ( ๐ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐ ) = ( 1 โ ๐ ) ) } ๐บ โ ( ( ๐น โ ( ๐ ๐ป ๐ ) โง ๐บ โ ( ๐ ๐ป ๐ ) ) โง ( ๐บ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐น ) = ( 1 โ ๐ ) ) ) |
16 |
|
df-3an |
โข ( ( ๐น โ ( ๐ ๐ป ๐ ) โง ๐บ โ ( ๐ ๐ป ๐ ) โง ( ๐บ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐น ) = ( 1 โ ๐ ) ) โ ( ( ๐น โ ( ๐ ๐ป ๐ ) โง ๐บ โ ( ๐ ๐ป ๐ ) ) โง ( ๐บ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐น ) = ( 1 โ ๐ ) ) ) |
17 |
15 16
|
bitr4i |
โข ( ๐น { โจ ๐ , ๐ โฉ โฃ ( ( ๐ โ ( ๐ ๐ป ๐ ) โง ๐ โ ( ๐ ๐ป ๐ ) ) โง ( ๐ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐ ) = ( 1 โ ๐ ) ) } ๐บ โ ( ๐น โ ( ๐ ๐ป ๐ ) โง ๐บ โ ( ๐ ๐ป ๐ ) โง ( ๐บ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐น ) = ( 1 โ ๐ ) ) ) |
18 |
10 17
|
bitrdi |
โข ( ๐ โ ( ๐น ( ๐ ๐ ๐ ) ๐บ โ ( ๐น โ ( ๐ ๐ป ๐ ) โง ๐บ โ ( ๐ ๐ป ๐ ) โง ( ๐บ ( โจ ๐ , ๐ โฉ ยท ๐ ) ๐น ) = ( 1 โ ๐ ) ) ) ) |