Step |
Hyp |
Ref |
Expression |
1 |
|
issect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
issect.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
issect.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
issect.i |
⊢ 1 = ( Id ‘ 𝐶 ) |
5 |
|
issect.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
6 |
|
issect.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
7 |
|
issect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
issect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
1 2 3 4 5 6 7 8
|
sectfval |
⊢ ( 𝜑 → ( 𝑋 𝑆 𝑌 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ) |
10 |
9
|
breqd |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } 𝐺 ) ) |
11 |
|
oveq12 |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) ) |
12 |
11
|
ancoms |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) ) |
13 |
12
|
eqeq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
14 |
|
eqid |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } |
15 |
13 14
|
brab2a |
⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
16 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
17 |
15 16
|
bitr4i |
⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
18 |
10 17
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) ) |