Metamath Proof Explorer


Theorem issect

Description: The property " F is a section of G ". (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses issect.b B=BaseC
issect.h H=HomC
issect.o ·˙=compC
issect.i 1˙=IdC
issect.s S=SectC
issect.c φCCat
issect.x φXB
issect.y φYB
Assertion issect φFXSYGFXHYGYHXGXY·˙XF=1˙X

Proof

Step Hyp Ref Expression
1 issect.b B=BaseC
2 issect.h H=HomC
3 issect.o ·˙=compC
4 issect.i 1˙=IdC
5 issect.s S=SectC
6 issect.c φCCat
7 issect.x φXB
8 issect.y φYB
9 1 2 3 4 5 6 7 8 sectfval φXSY=fg|fXHYgYHXgXY·˙Xf=1˙X
10 9 breqd φFXSYGFfg|fXHYgYHXgXY·˙Xf=1˙XG
11 oveq12 g=Gf=FgXY·˙Xf=GXY·˙XF
12 11 ancoms f=Fg=GgXY·˙Xf=GXY·˙XF
13 12 eqeq1d f=Fg=GgXY·˙Xf=1˙XGXY·˙XF=1˙X
14 eqid fg|fXHYgYHXgXY·˙Xf=1˙X=fg|fXHYgYHXgXY·˙Xf=1˙X
15 13 14 brab2a Ffg|fXHYgYHXgXY·˙Xf=1˙XGFXHYGYHXGXY·˙XF=1˙X
16 df-3an FXHYGYHXGXY·˙XF=1˙XFXHYGYHXGXY·˙XF=1˙X
17 15 16 bitr4i Ffg|fXHYgYHXgXY·˙Xf=1˙XGFXHYGYHXGXY·˙XF=1˙X
18 10 17 bitrdi φFXSYGFXHYGYHXGXY·˙XF=1˙X