Metamath Proof Explorer


Theorem issect2

Description: Property of being a section. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses issect.b B=BaseC
issect.h H=HomC
issect.o ·˙=compC
issect.i 1˙=IdC
issect.s S=SectC
issect.c φCCat
issect.x φXB
issect.y φYB
issect.f φFXHY
issect.g φGYHX
Assertion issect2 φFXSYGGXY·˙XF=1˙X

Proof

Step Hyp Ref Expression
1 issect.b B=BaseC
2 issect.h H=HomC
3 issect.o ·˙=compC
4 issect.i 1˙=IdC
5 issect.s S=SectC
6 issect.c φCCat
7 issect.x φXB
8 issect.y φYB
9 issect.f φFXHY
10 issect.g φGYHX
11 9 10 jca φFXHYGYHX
12 1 2 3 4 5 6 7 8 issect φFXSYGFXHYGYHXGXY·˙XF=1˙X
13 df-3an FXHYGYHXGXY·˙XF=1˙XFXHYGYHXGXY·˙XF=1˙X
14 12 13 bitrdi φFXSYGFXHYGYHXGXY·˙XF=1˙X
15 11 14 mpbirand φFXSYGGXY·˙XF=1˙X