Description: If G is a section of F and F is a section of H , then G = H . Proposition 3.10 of Adamek p. 28. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sectcan.b | |
|
sectcan.s | |
||
sectcan.c | |
||
sectcan.x | |
||
sectcan.y | |
||
sectcan.1 | |
||
sectcan.2 | |
||
Assertion | sectcan | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sectcan.b | |
|
2 | sectcan.s | |
|
3 | sectcan.c | |
|
4 | sectcan.x | |
|
5 | sectcan.y | |
|
6 | sectcan.1 | |
|
7 | sectcan.2 | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 1 8 9 10 2 3 4 5 | issect | |
12 | 6 11 | mpbid | |
13 | 12 | simp1d | |
14 | 1 8 9 10 2 3 5 4 | issect | |
15 | 7 14 | mpbid | |
16 | 15 | simp1d | |
17 | 15 | simp2d | |
18 | 1 8 9 3 4 5 4 13 16 5 17 | catass | |
19 | 15 | simp3d | |
20 | 19 | oveq1d | |
21 | 12 | simp3d | |
22 | 21 | oveq2d | |
23 | 18 20 22 | 3eqtr3d | |
24 | 1 8 10 3 4 9 5 13 | catlid | |
25 | 1 8 10 3 4 9 5 17 | catrid | |
26 | 23 24 25 | 3eqtr3d | |