Metamath Proof Explorer


Theorem sectco

Description: Composition of two sections. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses sectco.b B=BaseC
sectco.o ·˙=compC
sectco.s S=SectC
sectco.c φCCat
sectco.x φXB
sectco.y φYB
sectco.z φZB
sectco.1 φFXSYG
sectco.2 φHYSZK
Assertion sectco φHXY·˙ZFXSZGZY·˙XK

Proof

Step Hyp Ref Expression
1 sectco.b B=BaseC
2 sectco.o ·˙=compC
3 sectco.s S=SectC
4 sectco.c φCCat
5 sectco.x φXB
6 sectco.y φYB
7 sectco.z φZB
8 sectco.1 φFXSYG
9 sectco.2 φHYSZK
10 eqid HomC=HomC
11 eqid IdC=IdC
12 1 10 2 11 3 4 5 6 issect φFXSYGFXHomCYGYHomCXGXY·˙XF=IdCX
13 8 12 mpbid φFXHomCYGYHomCXGXY·˙XF=IdCX
14 13 simp1d φFXHomCY
15 1 10 2 11 3 4 6 7 issect φHYSZKHYHomCZKZHomCYKYZ·˙YH=IdCY
16 9 15 mpbid φHYHomCZKZHomCYKYZ·˙YH=IdCY
17 16 simp1d φHYHomCZ
18 1 10 2 4 5 6 7 14 17 catcocl φHXY·˙ZFXHomCZ
19 16 simp2d φKZHomCY
20 13 simp2d φGYHomCX
21 1 10 2 4 5 7 6 18 19 5 20 catass φGZY·˙XKXZ·˙XHXY·˙ZF=GXY·˙XKXZ·˙YHXY·˙ZF
22 16 simp3d φKYZ·˙YH=IdCY
23 22 oveq1d φKYZ·˙YHXY·˙YF=IdCYXY·˙YF
24 1 10 2 4 5 6 7 14 17 6 19 catass φKYZ·˙YHXY·˙YF=KXZ·˙YHXY·˙ZF
25 1 10 11 4 5 2 6 14 catlid φIdCYXY·˙YF=F
26 23 24 25 3eqtr3d φKXZ·˙YHXY·˙ZF=F
27 26 oveq2d φGXY·˙XKXZ·˙YHXY·˙ZF=GXY·˙XF
28 13 simp3d φGXY·˙XF=IdCX
29 21 27 28 3eqtrd φGZY·˙XKXZ·˙XHXY·˙ZF=IdCX
30 1 10 2 4 7 6 5 19 20 catcocl φGZY·˙XKZHomCX
31 1 10 2 11 3 4 5 7 18 30 issect2 φHXY·˙ZFXSZGZY·˙XKGZY·˙XKXZ·˙XHXY·˙ZF=IdCX
32 29 31 mpbird φHXY·˙ZFXSZGZY·˙XK