Step |
Hyp |
Ref |
Expression |
1 |
|
sectco.b |
|- B = ( Base ` C ) |
2 |
|
sectco.o |
|- .x. = ( comp ` C ) |
3 |
|
sectco.s |
|- S = ( Sect ` C ) |
4 |
|
sectco.c |
|- ( ph -> C e. Cat ) |
5 |
|
sectco.x |
|- ( ph -> X e. B ) |
6 |
|
sectco.y |
|- ( ph -> Y e. B ) |
7 |
|
sectco.z |
|- ( ph -> Z e. B ) |
8 |
|
sectco.1 |
|- ( ph -> F ( X S Y ) G ) |
9 |
|
sectco.2 |
|- ( ph -> H ( Y S Z ) K ) |
10 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
11 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
12 |
1 10 2 11 3 4 5 6
|
issect |
|- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
13 |
8 12
|
mpbid |
|- ( ph -> ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( ( Id ` C ) ` X ) ) ) |
14 |
13
|
simp1d |
|- ( ph -> F e. ( X ( Hom ` C ) Y ) ) |
15 |
1 10 2 11 3 4 6 7
|
issect |
|- ( ph -> ( H ( Y S Z ) K <-> ( H e. ( Y ( Hom ` C ) Z ) /\ K e. ( Z ( Hom ` C ) Y ) /\ ( K ( <. Y , Z >. .x. Y ) H ) = ( ( Id ` C ) ` Y ) ) ) ) |
16 |
9 15
|
mpbid |
|- ( ph -> ( H e. ( Y ( Hom ` C ) Z ) /\ K e. ( Z ( Hom ` C ) Y ) /\ ( K ( <. Y , Z >. .x. Y ) H ) = ( ( Id ` C ) ` Y ) ) ) |
17 |
16
|
simp1d |
|- ( ph -> H e. ( Y ( Hom ` C ) Z ) ) |
18 |
1 10 2 4 5 6 7 14 17
|
catcocl |
|- ( ph -> ( H ( <. X , Y >. .x. Z ) F ) e. ( X ( Hom ` C ) Z ) ) |
19 |
16
|
simp2d |
|- ( ph -> K e. ( Z ( Hom ` C ) Y ) ) |
20 |
13
|
simp2d |
|- ( ph -> G e. ( Y ( Hom ` C ) X ) ) |
21 |
1 10 2 4 5 7 6 18 19 5 20
|
catass |
|- ( ph -> ( ( G ( <. Z , Y >. .x. X ) K ) ( <. X , Z >. .x. X ) ( H ( <. X , Y >. .x. Z ) F ) ) = ( G ( <. X , Y >. .x. X ) ( K ( <. X , Z >. .x. Y ) ( H ( <. X , Y >. .x. Z ) F ) ) ) ) |
22 |
16
|
simp3d |
|- ( ph -> ( K ( <. Y , Z >. .x. Y ) H ) = ( ( Id ` C ) ` Y ) ) |
23 |
22
|
oveq1d |
|- ( ph -> ( ( K ( <. Y , Z >. .x. Y ) H ) ( <. X , Y >. .x. Y ) F ) = ( ( ( Id ` C ) ` Y ) ( <. X , Y >. .x. Y ) F ) ) |
24 |
1 10 2 4 5 6 7 14 17 6 19
|
catass |
|- ( ph -> ( ( K ( <. Y , Z >. .x. Y ) H ) ( <. X , Y >. .x. Y ) F ) = ( K ( <. X , Z >. .x. Y ) ( H ( <. X , Y >. .x. Z ) F ) ) ) |
25 |
1 10 11 4 5 2 6 14
|
catlid |
|- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. .x. Y ) F ) = F ) |
26 |
23 24 25
|
3eqtr3d |
|- ( ph -> ( K ( <. X , Z >. .x. Y ) ( H ( <. X , Y >. .x. Z ) F ) ) = F ) |
27 |
26
|
oveq2d |
|- ( ph -> ( G ( <. X , Y >. .x. X ) ( K ( <. X , Z >. .x. Y ) ( H ( <. X , Y >. .x. Z ) F ) ) ) = ( G ( <. X , Y >. .x. X ) F ) ) |
28 |
13
|
simp3d |
|- ( ph -> ( G ( <. X , Y >. .x. X ) F ) = ( ( Id ` C ) ` X ) ) |
29 |
21 27 28
|
3eqtrd |
|- ( ph -> ( ( G ( <. Z , Y >. .x. X ) K ) ( <. X , Z >. .x. X ) ( H ( <. X , Y >. .x. Z ) F ) ) = ( ( Id ` C ) ` X ) ) |
30 |
1 10 2 4 7 6 5 19 20
|
catcocl |
|- ( ph -> ( G ( <. Z , Y >. .x. X ) K ) e. ( Z ( Hom ` C ) X ) ) |
31 |
1 10 2 11 3 4 5 7 18 30
|
issect2 |
|- ( ph -> ( ( H ( <. X , Y >. .x. Z ) F ) ( X S Z ) ( G ( <. Z , Y >. .x. X ) K ) <-> ( ( G ( <. Z , Y >. .x. X ) K ) ( <. X , Z >. .x. X ) ( H ( <. X , Y >. .x. Z ) F ) ) = ( ( Id ` C ) ` X ) ) ) |
32 |
29 31
|
mpbird |
|- ( ph -> ( H ( <. X , Y >. .x. Z ) F ) ( X S Z ) ( G ( <. Z , Y >. .x. X ) K ) ) |