Description: Closure of a composition arrow. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | catcocl.b | |
|
catcocl.h | |
||
catcocl.o | |
||
catcocl.c | |
||
catcocl.x | |
||
catcocl.y | |
||
catcocl.z | |
||
catcocl.f | |
||
catcocl.g | |
||
Assertion | catcocl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catcocl.b | |
|
2 | catcocl.h | |
|
3 | catcocl.o | |
|
4 | catcocl.c | |
|
5 | catcocl.x | |
|
6 | catcocl.y | |
|
7 | catcocl.z | |
|
8 | catcocl.f | |
|
9 | catcocl.g | |
|
10 | 1 2 3 | iscat | |
11 | 10 | ibi | |
12 | simpl | |
|
13 | 12 | 2ralimi | |
14 | 13 | 2ralimi | |
15 | 14 | adantl | |
16 | 15 | ralimi | |
17 | 4 11 16 | 3syl | |
18 | 6 | adantr | |
19 | 7 | ad2antrr | |
20 | 8 | ad3antrrr | |
21 | simpllr | |
|
22 | simplr | |
|
23 | 21 22 | oveq12d | |
24 | 20 23 | eleqtrrd | |
25 | 9 | ad3antrrr | |
26 | simpr | |
|
27 | 22 26 | oveq12d | |
28 | 25 27 | eleqtrrd | |
29 | 28 | adantr | |
30 | simp-5r | |
|
31 | simp-4r | |
|
32 | 30 31 | opeq12d | |
33 | simpllr | |
|
34 | 32 33 | oveq12d | |
35 | simpr | |
|
36 | simplr | |
|
37 | 34 35 36 | oveq123d | |
38 | 30 33 | oveq12d | |
39 | 37 38 | eleq12d | |
40 | 29 39 | rspcdv | |
41 | 24 40 | rspcimdv | |
42 | 19 41 | rspcimdv | |
43 | 18 42 | rspcimdv | |
44 | 5 43 | rspcimdv | |
45 | 17 44 | mpd | |