Metamath Proof Explorer


Theorem catcocl

Description: Closure of a composition arrow. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses catcocl.b B=BaseC
catcocl.h H=HomC
catcocl.o ·˙=compC
catcocl.c φCCat
catcocl.x φXB
catcocl.y φYB
catcocl.z φZB
catcocl.f φFXHY
catcocl.g φGYHZ
Assertion catcocl φGXY·˙ZFXHZ

Proof

Step Hyp Ref Expression
1 catcocl.b B=BaseC
2 catcocl.h H=HomC
3 catcocl.o ·˙=compC
4 catcocl.c φCCat
5 catcocl.x φXB
6 catcocl.y φYB
7 catcocl.z φZB
8 catcocl.f φFXHY
9 catcocl.g φGYHZ
10 1 2 3 iscat CCatCCatxBgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBvzHwvyz·˙wgxy·˙wf=vxz·˙wgxy·˙zf
11 10 ibi CCatxBgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBvzHwvyz·˙wgxy·˙wf=vxz·˙wgxy·˙zf
12 simpl gxy·˙zfxHzwBvzHwvyz·˙wgxy·˙wf=vxz·˙wgxy·˙zfgxy·˙zfxHz
13 12 2ralimi fxHygyHzgxy·˙zfxHzwBvzHwvyz·˙wgxy·˙wf=vxz·˙wgxy·˙zffxHygyHzgxy·˙zfxHz
14 13 2ralimi yBzBfxHygyHzgxy·˙zfxHzwBvzHwvyz·˙wgxy·˙wf=vxz·˙wgxy·˙zfyBzBfxHygyHzgxy·˙zfxHz
15 14 adantl gxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBvzHwvyz·˙wgxy·˙wf=vxz·˙wgxy·˙zfyBzBfxHygyHzgxy·˙zfxHz
16 15 ralimi xBgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBvzHwvyz·˙wgxy·˙wf=vxz·˙wgxy·˙zfxByBzBfxHygyHzgxy·˙zfxHz
17 4 11 16 3syl φxByBzBfxHygyHzgxy·˙zfxHz
18 6 adantr φx=XYB
19 7 ad2antrr φx=Xy=YZB
20 8 ad3antrrr φx=Xy=Yz=ZFXHY
21 simpllr φx=Xy=Yz=Zx=X
22 simplr φx=Xy=Yz=Zy=Y
23 21 22 oveq12d φx=Xy=Yz=ZxHy=XHY
24 20 23 eleqtrrd φx=Xy=Yz=ZFxHy
25 9 ad3antrrr φx=Xy=Yz=ZGYHZ
26 simpr φx=Xy=Yz=Zz=Z
27 22 26 oveq12d φx=Xy=Yz=ZyHz=YHZ
28 25 27 eleqtrrd φx=Xy=Yz=ZGyHz
29 28 adantr φx=Xy=Yz=Zf=FGyHz
30 simp-5r φx=Xy=Yz=Zf=Fg=Gx=X
31 simp-4r φx=Xy=Yz=Zf=Fg=Gy=Y
32 30 31 opeq12d φx=Xy=Yz=Zf=Fg=Gxy=XY
33 simpllr φx=Xy=Yz=Zf=Fg=Gz=Z
34 32 33 oveq12d φx=Xy=Yz=Zf=Fg=Gxy·˙z=XY·˙Z
35 simpr φx=Xy=Yz=Zf=Fg=Gg=G
36 simplr φx=Xy=Yz=Zf=Fg=Gf=F
37 34 35 36 oveq123d φx=Xy=Yz=Zf=Fg=Ggxy·˙zf=GXY·˙ZF
38 30 33 oveq12d φx=Xy=Yz=Zf=Fg=GxHz=XHZ
39 37 38 eleq12d φx=Xy=Yz=Zf=Fg=Ggxy·˙zfxHzGXY·˙ZFXHZ
40 29 39 rspcdv φx=Xy=Yz=Zf=FgyHzgxy·˙zfxHzGXY·˙ZFXHZ
41 24 40 rspcimdv φx=Xy=Yz=ZfxHygyHzgxy·˙zfxHzGXY·˙ZFXHZ
42 19 41 rspcimdv φx=Xy=YzBfxHygyHzgxy·˙zfxHzGXY·˙ZFXHZ
43 18 42 rspcimdv φx=XyBzBfxHygyHzgxy·˙zfxHzGXY·˙ZFXHZ
44 5 43 rspcimdv φxByBzBfxHygyHzgxy·˙zfxHzGXY·˙ZFXHZ
45 17 44 mpd φGXY·˙ZFXHZ