Metamath Proof Explorer


Theorem isofval

Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017)

Ref Expression
Assertion isofval C Cat Iso C = x V dom x Inv C

Proof

Step Hyp Ref Expression
1 df-iso Iso = c Cat x V dom x Inv c
2 fveq2 c = C Inv c = Inv C
3 2 coeq2d c = C x V dom x Inv c = x V dom x Inv C
4 id C Cat C Cat
5 funmpt Fun x V dom x
6 fvexd C Cat Inv C V
7 cofunexg Fun x V dom x Inv C V x V dom x Inv C V
8 5 6 7 sylancr C Cat x V dom x Inv C V
9 1 3 4 8 fvmptd3 C Cat Iso C = x V dom x Inv C