Metamath Proof Explorer


Theorem isofval

Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017)

Ref Expression
Assertion isofval CCatIsoC=xVdomxInvC

Proof

Step Hyp Ref Expression
1 df-iso Iso=cCatxVdomxInvc
2 fveq2 c=CInvc=InvC
3 2 coeq2d c=CxVdomxInvc=xVdomxInvC
4 id CCatCCat
5 funmpt FunxVdomx
6 fvexd CCatInvCV
7 cofunexg FunxVdomxInvCVxVdomxInvCV
8 5 6 7 sylancr CCatxVdomxInvCV
9 1 3 4 8 fvmptd3 CCatIsoC=xVdomxInvC