Description: The inverse relation in a category. Given arrows f : X --> Y and g : Y --> X , we say g Inv f , that is, g is an inverse of f , if g is a section of f and f is a section of g . Definition 3.8 of Adamek p. 28. (Contributed by FL, 22-Dec-2008) (Revised by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-inv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cinv | |
|
1 | vc | |
|
2 | ccat | |
|
3 | vx | |
|
4 | cbs | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | vy | |
|
8 | 3 | cv | |
9 | csect | |
|
10 | 5 9 | cfv | |
11 | 7 | cv | |
12 | 8 11 10 | co | |
13 | 11 8 10 | co | |
14 | 13 | ccnv | |
15 | 12 14 | cin | |
16 | 3 7 6 6 15 | cmpo | |
17 | 1 2 16 | cmpt | |
18 | 0 17 | wceq | |