Metamath Proof Explorer


Definition df-inv

Description: The inverse relation in a category. Given arrows f : X --> Y and g : Y --> X , we say g Inv f , that is, g is an inverse of f , if g is a section of f and f is a section of g . Definition 3.8 of Adamek p. 28. (Contributed by FL, 22-Dec-2008) (Revised by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-inv Inv=cCatxBasec,yBasecxSectcyySectcx-1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinv classInv
1 vc setvarc
2 ccat classCat
3 vx setvarx
4 cbs classBase
5 1 cv setvarc
6 5 4 cfv classBasec
7 vy setvary
8 3 cv setvarx
9 csect classSect
10 5 9 cfv classSectc
11 7 cv setvary
12 8 11 10 co classxSectcy
13 11 8 10 co classySectcx
14 13 ccnv classySectcx-1
15 12 14 cin classxSectcyySectcx-1
16 3 7 6 6 15 cmpo classxBasec,yBasecxSectcyySectcx-1
17 1 2 16 cmpt classcCatxBasec,yBasecxSectcyySectcx-1
18 0 17 wceq wffInv=cCatxBasec,yBasecxSectcyySectcx-1