| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sectcan.b |
|- B = ( Base ` C ) |
| 2 |
|
sectcan.s |
|- S = ( Sect ` C ) |
| 3 |
|
sectcan.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
sectcan.x |
|- ( ph -> X e. B ) |
| 5 |
|
sectcan.y |
|- ( ph -> Y e. B ) |
| 6 |
|
sectcan.1 |
|- ( ph -> G ( X S Y ) F ) |
| 7 |
|
sectcan.2 |
|- ( ph -> F ( Y S X ) H ) |
| 8 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 9 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 10 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 11 |
1 8 9 10 2 3 4 5
|
issect |
|- ( ph -> ( G ( X S Y ) F <-> ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) ) |
| 12 |
6 11
|
mpbid |
|- ( ph -> ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) |
| 13 |
12
|
simp1d |
|- ( ph -> G e. ( X ( Hom ` C ) Y ) ) |
| 14 |
1 8 9 10 2 3 5 4
|
issect |
|- ( ph -> ( F ( Y S X ) H <-> ( F e. ( Y ( Hom ` C ) X ) /\ H e. ( X ( Hom ` C ) Y ) /\ ( H ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) ) ) |
| 15 |
7 14
|
mpbid |
|- ( ph -> ( F e. ( Y ( Hom ` C ) X ) /\ H e. ( X ( Hom ` C ) Y ) /\ ( H ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) ) |
| 16 |
15
|
simp1d |
|- ( ph -> F e. ( Y ( Hom ` C ) X ) ) |
| 17 |
15
|
simp2d |
|- ( ph -> H e. ( X ( Hom ` C ) Y ) ) |
| 18 |
1 8 9 3 4 5 4 13 16 5 17
|
catass |
|- ( ph -> ( ( H ( <. Y , X >. ( comp ` C ) Y ) F ) ( <. X , Y >. ( comp ` C ) Y ) G ) = ( H ( <. X , X >. ( comp ` C ) Y ) ( F ( <. X , Y >. ( comp ` C ) X ) G ) ) ) |
| 19 |
15
|
simp3d |
|- ( ph -> ( H ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) |
| 20 |
19
|
oveq1d |
|- ( ph -> ( ( H ( <. Y , X >. ( comp ` C ) Y ) F ) ( <. X , Y >. ( comp ` C ) Y ) G ) = ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) G ) ) |
| 21 |
12
|
simp3d |
|- ( ph -> ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) |
| 22 |
21
|
oveq2d |
|- ( ph -> ( H ( <. X , X >. ( comp ` C ) Y ) ( F ( <. X , Y >. ( comp ` C ) X ) G ) ) = ( H ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) |
| 23 |
18 20 22
|
3eqtr3d |
|- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) G ) = ( H ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) |
| 24 |
1 8 10 3 4 9 5 13
|
catlid |
|- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) G ) = G ) |
| 25 |
1 8 10 3 4 9 5 17
|
catrid |
|- ( ph -> ( H ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) = H ) |
| 26 |
23 24 25
|
3eqtr3d |
|- ( ph -> G = H ) |