Step |
Hyp |
Ref |
Expression |
1 |
|
catidcl.b |
|
2 |
|
catidcl.h |
|
3 |
|
catidcl.i |
|
4 |
|
catidcl.c |
|
5 |
|
catidcl.x |
|
6 |
|
catlid.o |
|
7 |
|
catlid.y |
|
8 |
|
catlid.f |
|
9 |
|
oveq1 |
|
10 |
|
id |
|
11 |
9 10
|
eqeq12d |
|
12 |
|
oveq2 |
|
13 |
|
oveq2 |
|
14 |
13
|
oveqd |
|
15 |
14
|
eqeq1d |
|
16 |
12 15
|
raleqbidv |
|
17 |
|
simpr |
|
18 |
17
|
ralimi |
|
19 |
18
|
a1i |
|
20 |
19
|
ss2rabi |
|
21 |
1 2 6 4 3 5
|
cidval |
|
22 |
1 2 6 4 5
|
catideu |
|
23 |
|
riotacl2 |
|
24 |
22 23
|
syl |
|
25 |
21 24
|
eqeltrd |
|
26 |
20 25
|
sseldi |
|
27 |
|
oveq2 |
|
28 |
27
|
eqeq1d |
|
29 |
28
|
2ralbidv |
|
30 |
29
|
elrab |
|
31 |
30
|
simprbi |
|
32 |
26 31
|
syl |
|
33 |
16 32 7
|
rspcdva |
|
34 |
11 33 8
|
rspcdva |
|