Metamath Proof Explorer


Theorem cidval

Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses cidfval.b B=BaseC
cidfval.h H=HomC
cidfval.o ·˙=compC
cidfval.c φCCat
cidfval.i 1˙=IdC
cidval.x φXB
Assertion cidval φ1˙X=ιgXHX|yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f

Proof

Step Hyp Ref Expression
1 cidfval.b B=BaseC
2 cidfval.h H=HomC
3 cidfval.o ·˙=compC
4 cidfval.c φCCat
5 cidfval.i 1˙=IdC
6 cidval.x φXB
7 1 2 3 4 5 cidfval φ1˙=xBιgxHx|yBfyHxgyx·˙xf=ffxHyfxx·˙yg=f
8 simpr φx=Xx=X
9 8 8 oveq12d φx=XxHx=XHX
10 8 oveq2d φx=XyHx=yHX
11 8 opeq2d φx=Xyx=yX
12 11 8 oveq12d φx=Xyx·˙x=yX·˙X
13 12 oveqd φx=Xgyx·˙xf=gyX·˙Xf
14 13 eqeq1d φx=Xgyx·˙xf=fgyX·˙Xf=f
15 10 14 raleqbidv φx=XfyHxgyx·˙xf=ffyHXgyX·˙Xf=f
16 8 oveq1d φx=XxHy=XHy
17 8 8 opeq12d φx=Xxx=XX
18 17 oveq1d φx=Xxx·˙y=XX·˙y
19 18 oveqd φx=Xfxx·˙yg=fXX·˙yg
20 19 eqeq1d φx=Xfxx·˙yg=ffXX·˙yg=f
21 16 20 raleqbidv φx=XfxHyfxx·˙yg=ffXHyfXX·˙yg=f
22 15 21 anbi12d φx=XfyHxgyx·˙xf=ffxHyfxx·˙yg=ffyHXgyX·˙Xf=ffXHyfXX·˙yg=f
23 22 ralbidv φx=XyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
24 9 23 riotaeqbidv φx=XιgxHx|yBfyHxgyx·˙xf=ffxHyfxx·˙yg=f=ιgXHX|yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
25 riotaex ιgXHX|yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=fV
26 25 a1i φιgXHX|yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=fV
27 7 24 6 26 fvmptd φ1˙X=ιgXHX|yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f