| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cidfval.b |
|
| 2 |
|
cidfval.h |
|
| 3 |
|
cidfval.o |
|
| 4 |
|
cidfval.c |
|
| 5 |
|
cidfval.i |
|
| 6 |
|
fvexd |
|
| 7 |
|
fveq2 |
|
| 8 |
7 1
|
eqtr4di |
|
| 9 |
|
fvexd |
|
| 10 |
|
simpl |
|
| 11 |
10
|
fveq2d |
|
| 12 |
11 2
|
eqtr4di |
|
| 13 |
|
fvexd |
|
| 14 |
|
simpll |
|
| 15 |
14
|
fveq2d |
|
| 16 |
15 3
|
eqtr4di |
|
| 17 |
|
simpllr |
|
| 18 |
|
simplr |
|
| 19 |
18
|
oveqd |
|
| 20 |
18
|
oveqd |
|
| 21 |
|
simpr |
|
| 22 |
21
|
oveqd |
|
| 23 |
22
|
oveqd |
|
| 24 |
23
|
eqeq1d |
|
| 25 |
20 24
|
raleqbidv |
|
| 26 |
18
|
oveqd |
|
| 27 |
21
|
oveqd |
|
| 28 |
27
|
oveqd |
|
| 29 |
28
|
eqeq1d |
|
| 30 |
26 29
|
raleqbidv |
|
| 31 |
25 30
|
anbi12d |
|
| 32 |
17 31
|
raleqbidv |
|
| 33 |
19 32
|
riotaeqbidv |
|
| 34 |
17 33
|
mpteq12dv |
|
| 35 |
13 16 34
|
csbied2 |
|
| 36 |
9 12 35
|
csbied2 |
|
| 37 |
6 8 36
|
csbied2 |
|
| 38 |
|
df-cid |
|
| 39 |
37 38 1
|
mptfvmpt |
|
| 40 |
4 39
|
syl |
|
| 41 |
5 40
|
eqtrid |
|