Metamath Proof Explorer
Table of Contents - 8.4. Categorical constructions
- Product of categories
- cxpc
- c1stf
- c2ndf
- cprf
- df-xpc
- df-1stf
- df-2ndf
- df-prf
- fnxpc
- xpcval
- xpcbas
- xpchomfval
- xpchom
- relxpchom
- xpccofval
- xpcco
- xpcco1st
- xpcco2nd
- xpchom2
- xpcco2
- xpccatid
- xpcid
- xpccat
- 1stfval
- 1stf1
- 1stf2
- 2ndfval
- 2ndf1
- 2ndf2
- 1stfcl
- 2ndfcl
- prfval
- prf1
- prf2fval
- prf2
- prfcl
- prf1st
- prf2nd
- 1st2ndprf
- catcxpccl
- xpcpropd
- Functor evaluation
- cevlf
- ccurf
- cuncf
- cdiag
- df-evlf
- df-curf
- df-uncf
- df-diag
- evlfval
- evlf2
- evlf2val
- evlf1
- evlfcllem
- evlfcl
- curfval
- curf1fval
- curf1
- curf11
- curf12
- curf1cl
- curf2
- curf2val
- curf2cl
- curfcl
- curfpropd
- uncfval
- uncfcl
- uncf1
- uncf2
- curfuncf
- uncfcurf
- diagval
- diagcl
- diag1cl
- diag11
- diag12
- diag2
- diag2cl
- curf2ndf
- Hom functor
- chof
- cyon
- df-hof
- df-yon
- hofval
- hof1fval
- hof1
- hof2fval
- hof2val
- hof2
- hofcllem
- hofcl
- oppchofcl
- yonval
- yoncl
- yon1cl
- yon11
- yon12
- yon2
- hofpropd
- yonpropd
- oppcyon
- oyoncl
- oyon1cl
- yonedalem1
- yonedalem21
- yonedalem3a
- yonedalem4a
- yonedalem4b
- yonedalem4c
- yonedalem22
- yonedalem3b
- yonedalem3
- yonedainv
- yonffthlem
- yoneda
- yonffth
- yoniso