Metamath Proof Explorer


Theorem hofcl

Description: Closure of the Hom functor. Note that the codomain is the category SetCatU for any universe U which contains each Hom-set. This corresponds to the assertion that C be locally small (with respect to U ). (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofcl.m M = Hom F C
hofcl.o O = oppCat C
hofcl.d D = SetCat U
hofcl.c φ C Cat
hofcl.u φ U V
hofcl.h φ ran Hom 𝑓 C U
Assertion hofcl φ M O × c C Func D

Proof

Step Hyp Ref Expression
1 hofcl.m M = Hom F C
2 hofcl.o O = oppCat C
3 hofcl.d D = SetCat U
4 hofcl.c φ C Cat
5 hofcl.u φ U V
6 hofcl.h φ ran Hom 𝑓 C U
7 eqid Base C = Base C
8 eqid Hom C = Hom C
9 eqid comp C = comp C
10 1 4 7 8 9 hofval φ M = Hom 𝑓 C x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f
11 fvex Hom 𝑓 C V
12 fvex Base C V
13 12 12 xpex Base C × Base C V
14 13 13 mpoex x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f V
15 11 14 op2ndd M = Hom 𝑓 C x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f 2 nd M = x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f
16 10 15 syl φ 2 nd M = x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f
17 16 opeq2d φ Hom 𝑓 C 2 nd M = Hom 𝑓 C x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f
18 10 17 eqtr4d φ M = Hom 𝑓 C 2 nd M
19 eqid O × c C = O × c C
20 2 7 oppcbas Base C = Base O
21 19 20 7 xpcbas Base C × Base C = Base O × c C
22 eqid Base D = Base D
23 eqid Hom O × c C = Hom O × c C
24 eqid Hom D = Hom D
25 eqid Id O × c C = Id O × c C
26 eqid Id D = Id D
27 eqid comp O × c C = comp O × c C
28 eqid comp D = comp D
29 2 oppccat C Cat O Cat
30 4 29 syl φ O Cat
31 19 30 4 xpccat φ O × c C Cat
32 3 setccat U V D Cat
33 5 32 syl φ D Cat
34 eqid Hom 𝑓 C = Hom 𝑓 C
35 34 7 homffn Hom 𝑓 C Fn Base C × Base C
36 35 a1i φ Hom 𝑓 C Fn Base C × Base C
37 df-f Hom 𝑓 C : Base C × Base C U Hom 𝑓 C Fn Base C × Base C ran Hom 𝑓 C U
38 36 6 37 sylanbrc φ Hom 𝑓 C : Base C × Base C U
39 3 5 setcbas φ U = Base D
40 39 feq3d φ Hom 𝑓 C : Base C × Base C U Hom 𝑓 C : Base C × Base C Base D
41 38 40 mpbid φ Hom 𝑓 C : Base C × Base C Base D
42 eqid x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f = x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f
43 ovex 1 st y Hom C 1 st x V
44 ovex 2 nd x Hom C 2 nd y V
45 43 44 mpoex f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f V
46 42 45 fnmpoi x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f Fn Base C × Base C × Base C × Base C
47 16 fneq1d φ 2 nd M Fn Base C × Base C × Base C × Base C x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f Fn Base C × Base C × Base C × Base C
48 46 47 mpbiri φ 2 nd M Fn Base C × Base C × Base C × Base C
49 4 ad3antrrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x C Cat
50 simplrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y y Base C × Base C
51 xp1st y Base C × Base C 1 st y Base C
52 50 51 syl φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y 1 st y Base C
53 52 adantr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x 1 st y Base C
54 simplrl φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y x Base C × Base C
55 xp1st x Base C × Base C 1 st x Base C
56 54 55 syl φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y 1 st x Base C
57 56 adantr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x 1 st x Base C
58 xp2nd y Base C × Base C 2 nd y Base C
59 50 58 syl φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y 2 nd y Base C
60 59 adantr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x 2 nd y Base C
61 simplrl φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x f 1 st y Hom C 1 st x
62 1st2nd2 x Base C × Base C x = 1 st x 2 nd x
63 54 62 syl φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y x = 1 st x 2 nd x
64 63 adantr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x x = 1 st x 2 nd x
65 64 oveq1d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x x comp C 2 nd y = 1 st x 2 nd x comp C 2 nd y
66 65 oveqd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h = g 1 st x 2 nd x comp C 2 nd y h
67 xp2nd x Base C × Base C 2 nd x Base C
68 54 67 syl φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y 2 nd x Base C
69 68 adantr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x 2 nd x Base C
70 63 fveq2d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom C x = Hom C 1 st x 2 nd x
71 df-ov 1 st x Hom C 2 nd x = Hom C 1 st x 2 nd x
72 70 71 eqtr4di φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom C x = 1 st x Hom C 2 nd x
73 72 eleq2d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x h 1 st x Hom C 2 nd x
74 73 biimpa φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x h 1 st x Hom C 2 nd x
75 simplrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g 2 nd x Hom C 2 nd y
76 7 8 9 49 57 69 60 74 75 catcocl φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g 1 st x 2 nd x comp C 2 nd y h 1 st x Hom C 2 nd y
77 66 76 eqeltrd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st x Hom C 2 nd y
78 7 8 9 49 53 57 60 61 77 catcocl φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f 1 st y Hom C 2 nd y
79 1st2nd2 y Base C × Base C y = 1 st y 2 nd y
80 50 79 syl φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y y = 1 st y 2 nd y
81 80 fveq2d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom C y = Hom C 1 st y 2 nd y
82 df-ov 1 st y Hom C 2 nd y = Hom C 1 st y 2 nd y
83 81 82 eqtr4di φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom C y = 1 st y Hom C 2 nd y
84 83 adantr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x Hom C y = 1 st y Hom C 2 nd y
85 78 84 eleqtrrd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f Hom C y
86 85 fmpttd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f : Hom C x Hom C y
87 5 ad2antrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y U V
88 34 7 8 56 68 homfval φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y 1 st x Hom 𝑓 C 2 nd x = 1 st x Hom C 2 nd x
89 63 fveq2d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom 𝑓 C x = Hom 𝑓 C 1 st x 2 nd x
90 df-ov 1 st x Hom 𝑓 C 2 nd x = Hom 𝑓 C 1 st x 2 nd x
91 89 90 eqtr4di φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom 𝑓 C x = 1 st x Hom 𝑓 C 2 nd x
92 88 91 72 3eqtr4d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom 𝑓 C x = Hom C x
93 38 ad2antrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom 𝑓 C : Base C × Base C U
94 93 54 ffvelrnd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom 𝑓 C x U
95 92 94 eqeltrrd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom C x U
96 34 7 8 52 59 homfval φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y 1 st y Hom 𝑓 C 2 nd y = 1 st y Hom C 2 nd y
97 80 fveq2d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom 𝑓 C y = Hom 𝑓 C 1 st y 2 nd y
98 df-ov 1 st y Hom 𝑓 C 2 nd y = Hom 𝑓 C 1 st y 2 nd y
99 97 98 eqtr4di φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom 𝑓 C y = 1 st y Hom 𝑓 C 2 nd y
100 96 99 83 3eqtr4d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom 𝑓 C y = Hom C y
101 93 50 ffvelrnd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom 𝑓 C y U
102 100 101 eqeltrrd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom C y U
103 3 87 24 95 102 elsetchom φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f Hom C x Hom D Hom C y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f : Hom C x Hom C y
104 86 103 mpbird φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f Hom C x Hom D Hom C y
105 92 100 oveq12d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom 𝑓 C x Hom D Hom 𝑓 C y = Hom C x Hom D Hom C y
106 104 105 eleqtrrd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f Hom 𝑓 C x Hom D Hom 𝑓 C y
107 106 ralrimivva φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f Hom 𝑓 C x Hom D Hom 𝑓 C y
108 eqid f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f = f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f
109 108 fmpo f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f Hom 𝑓 C x Hom D Hom 𝑓 C y f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f : 1 st y Hom C 1 st x × 2 nd x Hom C 2 nd y Hom 𝑓 C x Hom D Hom 𝑓 C y
110 107 109 sylib φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f : 1 st y Hom C 1 st x × 2 nd x Hom C 2 nd y Hom 𝑓 C x Hom D Hom 𝑓 C y
111 16 oveqd φ x 2 nd M y = x x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f y
112 42 ovmpt4g x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f V x x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f y = f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f
113 45 112 mp3an3 x Base C × Base C y Base C × Base C x x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f y = f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f
114 111 113 sylan9eq φ x Base C × Base C y Base C × Base C x 2 nd M y = f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f
115 eqid Hom O = Hom O
116 simprl φ x Base C × Base C y Base C × Base C x Base C × Base C
117 simprr φ x Base C × Base C y Base C × Base C y Base C × Base C
118 19 21 115 8 23 116 117 xpchom φ x Base C × Base C y Base C × Base C x Hom O × c C y = 1 st x Hom O 1 st y × 2 nd x Hom C 2 nd y
119 8 2 oppchom 1 st x Hom O 1 st y = 1 st y Hom C 1 st x
120 119 xpeq1i 1 st x Hom O 1 st y × 2 nd x Hom C 2 nd y = 1 st y Hom C 1 st x × 2 nd x Hom C 2 nd y
121 118 120 eqtrdi φ x Base C × Base C y Base C × Base C x Hom O × c C y = 1 st y Hom C 1 st x × 2 nd x Hom C 2 nd y
122 114 121 feq12d φ x Base C × Base C y Base C × Base C x 2 nd M y : x Hom O × c C y Hom 𝑓 C x Hom D Hom 𝑓 C y f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f : 1 st y Hom C 1 st x × 2 nd x Hom C 2 nd y Hom 𝑓 C x Hom D Hom 𝑓 C y
123 110 122 mpbird φ x Base C × Base C y Base C × Base C x 2 nd M y : x Hom O × c C y Hom 𝑓 C x Hom D Hom 𝑓 C y
124 eqid Id C = Id C
125 4 ad2antrr φ x Base C × Base C f 1 st x Hom C 2 nd x C Cat
126 55 adantl φ x Base C × Base C 1 st x Base C
127 126 adantr φ x Base C × Base C f 1 st x Hom C 2 nd x 1 st x Base C
128 67 adantl φ x Base C × Base C 2 nd x Base C
129 128 adantr φ x Base C × Base C f 1 st x Hom C 2 nd x 2 nd x Base C
130 simpr φ x Base C × Base C f 1 st x Hom C 2 nd x f 1 st x Hom C 2 nd x
131 7 8 124 125 127 9 129 130 catlid φ x Base C × Base C f 1 st x Hom C 2 nd x Id C 2 nd x 1 st x 2 nd x comp C 2 nd x f = f
132 131 oveq1d φ x Base C × Base C f 1 st x Hom C 2 nd x Id C 2 nd x 1 st x 2 nd x comp C 2 nd x f 1 st x 1 st x comp C 2 nd x Id C 1 st x = f 1 st x 1 st x comp C 2 nd x Id C 1 st x
133 7 8 124 125 127 9 129 130 catrid φ x Base C × Base C f 1 st x Hom C 2 nd x f 1 st x 1 st x comp C 2 nd x Id C 1 st x = f
134 132 133 eqtrd φ x Base C × Base C f 1 st x Hom C 2 nd x Id C 2 nd x 1 st x 2 nd x comp C 2 nd x f 1 st x 1 st x comp C 2 nd x Id C 1 st x = f
135 134 mpteq2dva φ x Base C × Base C f 1 st x Hom C 2 nd x Id C 2 nd x 1 st x 2 nd x comp C 2 nd x f 1 st x 1 st x comp C 2 nd x Id C 1 st x = f 1 st x Hom C 2 nd x f
136 df-ov Id C 1 st x 1 st x 2 nd x 2 nd M 1 st x 2 nd x Id C 2 nd x = 1 st x 2 nd x 2 nd M 1 st x 2 nd x Id C 1 st x Id C 2 nd x
137 4 adantr φ x Base C × Base C C Cat
138 7 8 124 137 126 catidcl φ x Base C × Base C Id C 1 st x 1 st x Hom C 1 st x
139 7 8 124 137 128 catidcl φ x Base C × Base C Id C 2 nd x 2 nd x Hom C 2 nd x
140 1 137 7 8 126 128 126 128 9 138 139 hof2val φ x Base C × Base C Id C 1 st x 1 st x 2 nd x 2 nd M 1 st x 2 nd x Id C 2 nd x = f 1 st x Hom C 2 nd x Id C 2 nd x 1 st x 2 nd x comp C 2 nd x f 1 st x 1 st x comp C 2 nd x Id C 1 st x
141 136 140 syl5eqr φ x Base C × Base C 1 st x 2 nd x 2 nd M 1 st x 2 nd x Id C 1 st x Id C 2 nd x = f 1 st x Hom C 2 nd x Id C 2 nd x 1 st x 2 nd x comp C 2 nd x f 1 st x 1 st x comp C 2 nd x Id C 1 st x
142 62 adantl φ x Base C × Base C x = 1 st x 2 nd x
143 142 fveq2d φ x Base C × Base C Hom 𝑓 C x = Hom 𝑓 C 1 st x 2 nd x
144 143 90 eqtr4di φ x Base C × Base C Hom 𝑓 C x = 1 st x Hom 𝑓 C 2 nd x
145 34 7 8 126 128 homfval φ x Base C × Base C 1 st x Hom 𝑓 C 2 nd x = 1 st x Hom C 2 nd x
146 144 145 eqtrd φ x Base C × Base C Hom 𝑓 C x = 1 st x Hom C 2 nd x
147 146 reseq2d φ x Base C × Base C I Hom 𝑓 C x = I 1 st x Hom C 2 nd x
148 mptresid I 1 st x Hom C 2 nd x = f 1 st x Hom C 2 nd x f
149 147 148 eqtrdi φ x Base C × Base C I Hom 𝑓 C x = f 1 st x Hom C 2 nd x f
150 135 141 149 3eqtr4d φ x Base C × Base C 1 st x 2 nd x 2 nd M 1 st x 2 nd x Id C 1 st x Id C 2 nd x = I Hom 𝑓 C x
151 142 142 oveq12d φ x Base C × Base C x 2 nd M x = 1 st x 2 nd x 2 nd M 1 st x 2 nd x
152 142 fveq2d φ x Base C × Base C Id O × c C x = Id O × c C 1 st x 2 nd x
153 30 adantr φ x Base C × Base C O Cat
154 eqid Id O = Id O
155 19 153 137 20 7 154 124 25 126 128 xpcid φ x Base C × Base C Id O × c C 1 st x 2 nd x = Id O 1 st x Id C 2 nd x
156 2 124 oppcid C Cat Id O = Id C
157 137 156 syl φ x Base C × Base C Id O = Id C
158 157 fveq1d φ x Base C × Base C Id O 1 st x = Id C 1 st x
159 158 opeq1d φ x Base C × Base C Id O 1 st x Id C 2 nd x = Id C 1 st x Id C 2 nd x
160 152 155 159 3eqtrd φ x Base C × Base C Id O × c C x = Id C 1 st x Id C 2 nd x
161 151 160 fveq12d φ x Base C × Base C x 2 nd M x Id O × c C x = 1 st x 2 nd x 2 nd M 1 st x 2 nd x Id C 1 st x Id C 2 nd x
162 5 adantr φ x Base C × Base C U V
163 38 ffvelrnda φ x Base C × Base C Hom 𝑓 C x U
164 3 26 162 163 setcid φ x Base C × Base C Id D Hom 𝑓 C x = I Hom 𝑓 C x
165 150 161 164 3eqtr4d φ x Base C × Base C x 2 nd M x Id O × c C x = Id D Hom 𝑓 C x
166 4 3ad2ant1 φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z C Cat
167 5 3ad2ant1 φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z U V
168 6 3ad2ant1 φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z ran Hom 𝑓 C U
169 simp21 φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z x Base C × Base C
170 169 55 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st x Base C
171 169 67 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 2 nd x Base C
172 simp22 φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z y Base C × Base C
173 172 51 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st y Base C
174 172 58 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 2 nd y Base C
175 simp23 φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z z Base C × Base C
176 xp1st z Base C × Base C 1 st z Base C
177 175 176 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st z Base C
178 xp2nd z Base C × Base C 2 nd z Base C
179 175 178 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 2 nd z Base C
180 simp3l φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z f x Hom O × c C y
181 19 21 115 8 23 169 172 xpchom φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z x Hom O × c C y = 1 st x Hom O 1 st y × 2 nd x Hom C 2 nd y
182 180 181 eleqtrd φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z f 1 st x Hom O 1 st y × 2 nd x Hom C 2 nd y
183 xp1st f 1 st x Hom O 1 st y × 2 nd x Hom C 2 nd y 1 st f 1 st x Hom O 1 st y
184 182 183 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st f 1 st x Hom O 1 st y
185 184 119 eleqtrdi φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st f 1 st y Hom C 1 st x
186 xp2nd f 1 st x Hom O 1 st y × 2 nd x Hom C 2 nd y 2 nd f 2 nd x Hom C 2 nd y
187 182 186 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 2 nd f 2 nd x Hom C 2 nd y
188 simp3r φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z g y Hom O × c C z
189 19 21 115 8 23 172 175 xpchom φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z y Hom O × c C z = 1 st y Hom O 1 st z × 2 nd y Hom C 2 nd z
190 188 189 eleqtrd φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z g 1 st y Hom O 1 st z × 2 nd y Hom C 2 nd z
191 xp1st g 1 st y Hom O 1 st z × 2 nd y Hom C 2 nd z 1 st g 1 st y Hom O 1 st z
192 190 191 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st g 1 st y Hom O 1 st z
193 8 2 oppchom 1 st y Hom O 1 st z = 1 st z Hom C 1 st y
194 192 193 eleqtrdi φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st g 1 st z Hom C 1 st y
195 xp2nd g 1 st y Hom O 1 st z × 2 nd y Hom C 2 nd z 2 nd g 2 nd y Hom C 2 nd z
196 190 195 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 2 nd g 2 nd y Hom C 2 nd z
197 1 2 3 166 167 168 7 8 170 171 173 174 177 179 185 187 194 196 hofcllem φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st f 1 st z 1 st y comp C 1 st x 1 st g 1 st x 2 nd x 2 nd M 1 st z 2 nd z 2 nd g 2 nd x 2 nd y comp C 2 nd z 2 nd f = 1 st g 1 st y 2 nd y 2 nd M 1 st z 2 nd z 2 nd g 1 st x Hom C 2 nd x 1 st y Hom C 2 nd y comp D 1 st z Hom C 2 nd z 1 st f 1 st x 2 nd x 2 nd M 1 st y 2 nd y 2 nd f
198 169 62 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z x = 1 st x 2 nd x
199 1st2nd2 z Base C × Base C z = 1 st z 2 nd z
200 175 199 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z z = 1 st z 2 nd z
201 198 200 oveq12d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z x 2 nd M z = 1 st x 2 nd x 2 nd M 1 st z 2 nd z
202 172 79 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z y = 1 st y 2 nd y
203 198 202 opeq12d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z x y = 1 st x 2 nd x 1 st y 2 nd y
204 203 200 oveq12d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z x y comp O × c C z = 1 st x 2 nd x 1 st y 2 nd y comp O × c C 1 st z 2 nd z
205 1st2nd2 g 1 st y Hom O 1 st z × 2 nd y Hom C 2 nd z g = 1 st g 2 nd g
206 190 205 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z g = 1 st g 2 nd g
207 1st2nd2 f 1 st x Hom O 1 st y × 2 nd x Hom C 2 nd y f = 1 st f 2 nd f
208 182 207 syl φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z f = 1 st f 2 nd f
209 204 206 208 oveq123d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z g x y comp O × c C z f = 1 st g 2 nd g 1 st x 2 nd x 1 st y 2 nd y comp O × c C 1 st z 2 nd z 1 st f 2 nd f
210 eqid comp O = comp O
211 19 20 7 115 8 170 171 173 174 210 9 27 177 179 184 187 192 196 xpcco2 φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st g 2 nd g 1 st x 2 nd x 1 st y 2 nd y comp O × c C 1 st z 2 nd z 1 st f 2 nd f = 1 st g 1 st x 1 st y comp O 1 st z 1 st f 2 nd g 2 nd x 2 nd y comp C 2 nd z 2 nd f
212 7 9 2 170 173 177 oppcco φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st g 1 st x 1 st y comp O 1 st z 1 st f = 1 st f 1 st z 1 st y comp C 1 st x 1 st g
213 212 opeq1d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st g 1 st x 1 st y comp O 1 st z 1 st f 2 nd g 2 nd x 2 nd y comp C 2 nd z 2 nd f = 1 st f 1 st z 1 st y comp C 1 st x 1 st g 2 nd g 2 nd x 2 nd y comp C 2 nd z 2 nd f
214 209 211 213 3eqtrd φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z g x y comp O × c C z f = 1 st f 1 st z 1 st y comp C 1 st x 1 st g 2 nd g 2 nd x 2 nd y comp C 2 nd z 2 nd f
215 201 214 fveq12d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z x 2 nd M z g x y comp O × c C z f = 1 st x 2 nd x 2 nd M 1 st z 2 nd z 1 st f 1 st z 1 st y comp C 1 st x 1 st g 2 nd g 2 nd x 2 nd y comp C 2 nd z 2 nd f
216 df-ov 1 st f 1 st z 1 st y comp C 1 st x 1 st g 1 st x 2 nd x 2 nd M 1 st z 2 nd z 2 nd g 2 nd x 2 nd y comp C 2 nd z 2 nd f = 1 st x 2 nd x 2 nd M 1 st z 2 nd z 1 st f 1 st z 1 st y comp C 1 st x 1 st g 2 nd g 2 nd x 2 nd y comp C 2 nd z 2 nd f
217 215 216 eqtr4di φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z x 2 nd M z g x y comp O × c C z f = 1 st f 1 st z 1 st y comp C 1 st x 1 st g 1 st x 2 nd x 2 nd M 1 st z 2 nd z 2 nd g 2 nd x 2 nd y comp C 2 nd z 2 nd f
218 198 fveq2d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z Hom 𝑓 C x = Hom 𝑓 C 1 st x 2 nd x
219 218 90 eqtr4di φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z Hom 𝑓 C x = 1 st x Hom 𝑓 C 2 nd x
220 34 7 8 170 171 homfval φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st x Hom 𝑓 C 2 nd x = 1 st x Hom C 2 nd x
221 219 220 eqtrd φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z Hom 𝑓 C x = 1 st x Hom C 2 nd x
222 202 fveq2d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z Hom 𝑓 C y = Hom 𝑓 C 1 st y 2 nd y
223 222 98 eqtr4di φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z Hom 𝑓 C y = 1 st y Hom 𝑓 C 2 nd y
224 34 7 8 173 174 homfval φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st y Hom 𝑓 C 2 nd y = 1 st y Hom C 2 nd y
225 223 224 eqtrd φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z Hom 𝑓 C y = 1 st y Hom C 2 nd y
226 221 225 opeq12d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z Hom 𝑓 C x Hom 𝑓 C y = 1 st x Hom C 2 nd x 1 st y Hom C 2 nd y
227 200 fveq2d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z Hom 𝑓 C z = Hom 𝑓 C 1 st z 2 nd z
228 df-ov 1 st z Hom 𝑓 C 2 nd z = Hom 𝑓 C 1 st z 2 nd z
229 227 228 eqtr4di φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z Hom 𝑓 C z = 1 st z Hom 𝑓 C 2 nd z
230 34 7 8 177 179 homfval φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z 1 st z Hom 𝑓 C 2 nd z = 1 st z Hom C 2 nd z
231 229 230 eqtrd φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z Hom 𝑓 C z = 1 st z Hom C 2 nd z
232 226 231 oveq12d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z Hom 𝑓 C x Hom 𝑓 C y comp D Hom 𝑓 C z = 1 st x Hom C 2 nd x 1 st y Hom C 2 nd y comp D 1 st z Hom C 2 nd z
233 202 200 oveq12d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z y 2 nd M z = 1 st y 2 nd y 2 nd M 1 st z 2 nd z
234 233 206 fveq12d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z y 2 nd M z g = 1 st y 2 nd y 2 nd M 1 st z 2 nd z 1 st g 2 nd g
235 df-ov 1 st g 1 st y 2 nd y 2 nd M 1 st z 2 nd z 2 nd g = 1 st y 2 nd y 2 nd M 1 st z 2 nd z 1 st g 2 nd g
236 234 235 eqtr4di φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z y 2 nd M z g = 1 st g 1 st y 2 nd y 2 nd M 1 st z 2 nd z 2 nd g
237 198 202 oveq12d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z x 2 nd M y = 1 st x 2 nd x 2 nd M 1 st y 2 nd y
238 237 208 fveq12d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z x 2 nd M y f = 1 st x 2 nd x 2 nd M 1 st y 2 nd y 1 st f 2 nd f
239 df-ov 1 st f 1 st x 2 nd x 2 nd M 1 st y 2 nd y 2 nd f = 1 st x 2 nd x 2 nd M 1 st y 2 nd y 1 st f 2 nd f
240 238 239 eqtr4di φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z x 2 nd M y f = 1 st f 1 st x 2 nd x 2 nd M 1 st y 2 nd y 2 nd f
241 232 236 240 oveq123d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z y 2 nd M z g Hom 𝑓 C x Hom 𝑓 C y comp D Hom 𝑓 C z x 2 nd M y f = 1 st g 1 st y 2 nd y 2 nd M 1 st z 2 nd z 2 nd g 1 st x Hom C 2 nd x 1 st y Hom C 2 nd y comp D 1 st z Hom C 2 nd z 1 st f 1 st x 2 nd x 2 nd M 1 st y 2 nd y 2 nd f
242 197 217 241 3eqtr4d φ x Base C × Base C y Base C × Base C z Base C × Base C f x Hom O × c C y g y Hom O × c C z x 2 nd M z g x y comp O × c C z f = y 2 nd M z g Hom 𝑓 C x Hom 𝑓 C y comp D Hom 𝑓 C z x 2 nd M y f
243 21 22 23 24 25 26 27 28 31 33 41 48 123 165 242 isfuncd φ Hom 𝑓 C O × c C Func D 2 nd M
244 df-br Hom 𝑓 C O × c C Func D 2 nd M Hom 𝑓 C 2 nd M O × c C Func D
245 243 244 sylib φ Hom 𝑓 C 2 nd M O × c C Func D
246 18 245 eqeltrd φ M O × c C Func D