Metamath Proof Explorer


Theorem xpcid

Description: The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpccat.t T = C × c D
xpccat.c φ C Cat
xpccat.d φ D Cat
xpccat.x X = Base C
xpccat.y Y = Base D
xpccat.i I = Id C
xpccat.j J = Id D
xpcid.1 1 ˙ = Id T
xpcid.r φ R X
xpcid.s φ S Y
Assertion xpcid φ 1 ˙ R S = I R J S

Proof

Step Hyp Ref Expression
1 xpccat.t T = C × c D
2 xpccat.c φ C Cat
3 xpccat.d φ D Cat
4 xpccat.x X = Base C
5 xpccat.y Y = Base D
6 xpccat.i I = Id C
7 xpccat.j J = Id D
8 xpcid.1 1 ˙ = Id T
9 xpcid.r φ R X
10 xpcid.s φ S Y
11 df-ov R 1 ˙ S = 1 ˙ R S
12 1 2 3 4 5 6 7 xpccatid φ T Cat Id T = x X , y Y I x J y
13 12 simprd φ Id T = x X , y Y I x J y
14 8 13 syl5eq φ 1 ˙ = x X , y Y I x J y
15 simprl φ x = R y = S x = R
16 15 fveq2d φ x = R y = S I x = I R
17 simprr φ x = R y = S y = S
18 17 fveq2d φ x = R y = S J y = J S
19 16 18 opeq12d φ x = R y = S I x J y = I R J S
20 opex I R J S V
21 20 a1i φ I R J S V
22 14 19 9 10 21 ovmpod φ R 1 ˙ S = I R J S
23 11 22 syl5eqr φ 1 ˙ R S = I R J S