Metamath Proof Explorer


Theorem xpcid

Description: The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpccat.t
|- T = ( C Xc. D )
xpccat.c
|- ( ph -> C e. Cat )
xpccat.d
|- ( ph -> D e. Cat )
xpccat.x
|- X = ( Base ` C )
xpccat.y
|- Y = ( Base ` D )
xpccat.i
|- I = ( Id ` C )
xpccat.j
|- J = ( Id ` D )
xpcid.1
|- .1. = ( Id ` T )
xpcid.r
|- ( ph -> R e. X )
xpcid.s
|- ( ph -> S e. Y )
Assertion xpcid
|- ( ph -> ( .1. ` <. R , S >. ) = <. ( I ` R ) , ( J ` S ) >. )

Proof

Step Hyp Ref Expression
1 xpccat.t
 |-  T = ( C Xc. D )
2 xpccat.c
 |-  ( ph -> C e. Cat )
3 xpccat.d
 |-  ( ph -> D e. Cat )
4 xpccat.x
 |-  X = ( Base ` C )
5 xpccat.y
 |-  Y = ( Base ` D )
6 xpccat.i
 |-  I = ( Id ` C )
7 xpccat.j
 |-  J = ( Id ` D )
8 xpcid.1
 |-  .1. = ( Id ` T )
9 xpcid.r
 |-  ( ph -> R e. X )
10 xpcid.s
 |-  ( ph -> S e. Y )
11 df-ov
 |-  ( R .1. S ) = ( .1. ` <. R , S >. )
12 1 2 3 4 5 6 7 xpccatid
 |-  ( ph -> ( T e. Cat /\ ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) )
13 12 simprd
 |-  ( ph -> ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) )
14 8 13 syl5eq
 |-  ( ph -> .1. = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) )
15 simprl
 |-  ( ( ph /\ ( x = R /\ y = S ) ) -> x = R )
16 15 fveq2d
 |-  ( ( ph /\ ( x = R /\ y = S ) ) -> ( I ` x ) = ( I ` R ) )
17 simprr
 |-  ( ( ph /\ ( x = R /\ y = S ) ) -> y = S )
18 17 fveq2d
 |-  ( ( ph /\ ( x = R /\ y = S ) ) -> ( J ` y ) = ( J ` S ) )
19 16 18 opeq12d
 |-  ( ( ph /\ ( x = R /\ y = S ) ) -> <. ( I ` x ) , ( J ` y ) >. = <. ( I ` R ) , ( J ` S ) >. )
20 opex
 |-  <. ( I ` R ) , ( J ` S ) >. e. _V
21 20 a1i
 |-  ( ph -> <. ( I ` R ) , ( J ` S ) >. e. _V )
22 14 19 9 10 21 ovmpod
 |-  ( ph -> ( R .1. S ) = <. ( I ` R ) , ( J ` S ) >. )
23 11 22 syl5eqr
 |-  ( ph -> ( .1. ` <. R , S >. ) = <. ( I ` R ) , ( J ` S ) >. )