Step |
Hyp |
Ref |
Expression |
1 |
|
xpccat.t |
|- T = ( C Xc. D ) |
2 |
|
xpccat.c |
|- ( ph -> C e. Cat ) |
3 |
|
xpccat.d |
|- ( ph -> D e. Cat ) |
4 |
|
xpccat.x |
|- X = ( Base ` C ) |
5 |
|
xpccat.y |
|- Y = ( Base ` D ) |
6 |
|
xpccat.i |
|- I = ( Id ` C ) |
7 |
|
xpccat.j |
|- J = ( Id ` D ) |
8 |
|
xpcid.1 |
|- .1. = ( Id ` T ) |
9 |
|
xpcid.r |
|- ( ph -> R e. X ) |
10 |
|
xpcid.s |
|- ( ph -> S e. Y ) |
11 |
|
df-ov |
|- ( R .1. S ) = ( .1. ` <. R , S >. ) |
12 |
1 2 3 4 5 6 7
|
xpccatid |
|- ( ph -> ( T e. Cat /\ ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) ) |
13 |
12
|
simprd |
|- ( ph -> ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) |
14 |
8 13
|
eqtrid |
|- ( ph -> .1. = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) |
15 |
|
simprl |
|- ( ( ph /\ ( x = R /\ y = S ) ) -> x = R ) |
16 |
15
|
fveq2d |
|- ( ( ph /\ ( x = R /\ y = S ) ) -> ( I ` x ) = ( I ` R ) ) |
17 |
|
simprr |
|- ( ( ph /\ ( x = R /\ y = S ) ) -> y = S ) |
18 |
17
|
fveq2d |
|- ( ( ph /\ ( x = R /\ y = S ) ) -> ( J ` y ) = ( J ` S ) ) |
19 |
16 18
|
opeq12d |
|- ( ( ph /\ ( x = R /\ y = S ) ) -> <. ( I ` x ) , ( J ` y ) >. = <. ( I ` R ) , ( J ` S ) >. ) |
20 |
|
opex |
|- <. ( I ` R ) , ( J ` S ) >. e. _V |
21 |
20
|
a1i |
|- ( ph -> <. ( I ` R ) , ( J ` S ) >. e. _V ) |
22 |
14 19 9 10 21
|
ovmpod |
|- ( ph -> ( R .1. S ) = <. ( I ` R ) , ( J ` S ) >. ) |
23 |
11 22
|
eqtr3id |
|- ( ph -> ( .1. ` <. R , S >. ) = <. ( I ` R ) , ( J ` S ) >. ) |