Description: The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpccat.t | |- T = ( C Xc. D ) |
|
| xpccat.c | |- ( ph -> C e. Cat ) |
||
| xpccat.d | |- ( ph -> D e. Cat ) |
||
| Assertion | xpccat | |- ( ph -> T e. Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpccat.t | |- T = ( C Xc. D ) |
|
| 2 | xpccat.c | |- ( ph -> C e. Cat ) |
|
| 3 | xpccat.d | |- ( ph -> D e. Cat ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 6 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 7 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 8 | 1 2 3 4 5 6 7 | xpccatid | |- ( ph -> ( T e. Cat /\ ( Id ` T ) = ( x e. ( Base ` C ) , y e. ( Base ` D ) |-> <. ( ( Id ` C ) ` x ) , ( ( Id ` D ) ` y ) >. ) ) ) |
| 9 | 8 | simpld | |- ( ph -> T e. Cat ) |