Metamath Proof Explorer


Theorem xpccat

Description: The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpccat.t
|- T = ( C Xc. D )
xpccat.c
|- ( ph -> C e. Cat )
xpccat.d
|- ( ph -> D e. Cat )
Assertion xpccat
|- ( ph -> T e. Cat )

Proof

Step Hyp Ref Expression
1 xpccat.t
 |-  T = ( C Xc. D )
2 xpccat.c
 |-  ( ph -> C e. Cat )
3 xpccat.d
 |-  ( ph -> D e. Cat )
4 eqid
 |-  ( Base ` C ) = ( Base ` C )
5 eqid
 |-  ( Base ` D ) = ( Base ` D )
6 eqid
 |-  ( Id ` C ) = ( Id ` C )
7 eqid
 |-  ( Id ` D ) = ( Id ` D )
8 1 2 3 4 5 6 7 xpccatid
 |-  ( ph -> ( T e. Cat /\ ( Id ` T ) = ( x e. ( Base ` C ) , y e. ( Base ` D ) |-> <. ( ( Id ` C ) ` x ) , ( ( Id ` D ) ` y ) >. ) ) )
9 8 simpld
 |-  ( ph -> T e. Cat )