Metamath Proof Explorer


Theorem xpccat

Description: The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpccat.t T=C×cD
xpccat.c φCCat
xpccat.d φDCat
Assertion xpccat φTCat

Proof

Step Hyp Ref Expression
1 xpccat.t T=C×cD
2 xpccat.c φCCat
3 xpccat.d φDCat
4 eqid BaseC=BaseC
5 eqid BaseD=BaseD
6 eqid IdC=IdC
7 eqid IdD=IdD
8 1 2 3 4 5 6 7 xpccatid φTCatIdT=xBaseC,yBaseDIdCxIdDy
9 8 simpld φTCat