Description: Define the binary product of categories, which has objects for each pair of objects of the factors, and morphisms for each pair of morphisms of the factors. Composition is componentwise. (Contributed by Mario Carneiro, 10-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-xpc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cxpc | |
|
1 | vr | |
|
2 | cvv | |
|
3 | vs | |
|
4 | cbs | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | 3 | cv | |
8 | 7 4 | cfv | |
9 | 6 8 | cxp | |
10 | vb | |
|
11 | vu | |
|
12 | 10 | cv | |
13 | vv | |
|
14 | c1st | |
|
15 | 11 | cv | |
16 | 15 14 | cfv | |
17 | chom | |
|
18 | 5 17 | cfv | |
19 | 13 | cv | |
20 | 19 14 | cfv | |
21 | 16 20 18 | co | |
22 | c2nd | |
|
23 | 15 22 | cfv | |
24 | 7 17 | cfv | |
25 | 19 22 | cfv | |
26 | 23 25 24 | co | |
27 | 21 26 | cxp | |
28 | 11 13 12 12 27 | cmpo | |
29 | vh | |
|
30 | cnx | |
|
31 | 30 4 | cfv | |
32 | 31 12 | cop | |
33 | 30 17 | cfv | |
34 | 29 | cv | |
35 | 33 34 | cop | |
36 | cco | |
|
37 | 30 36 | cfv | |
38 | vx | |
|
39 | 12 12 | cxp | |
40 | vy | |
|
41 | vg | |
|
42 | 38 | cv | |
43 | 42 22 | cfv | |
44 | 40 | cv | |
45 | 43 44 34 | co | |
46 | vf | |
|
47 | 42 34 | cfv | |
48 | 41 | cv | |
49 | 48 14 | cfv | |
50 | 42 14 | cfv | |
51 | 50 14 | cfv | |
52 | 43 14 | cfv | |
53 | 51 52 | cop | |
54 | 5 36 | cfv | |
55 | 44 14 | cfv | |
56 | 53 55 54 | co | |
57 | 46 | cv | |
58 | 57 14 | cfv | |
59 | 49 58 56 | co | |
60 | 48 22 | cfv | |
61 | 50 22 | cfv | |
62 | 43 22 | cfv | |
63 | 61 62 | cop | |
64 | 7 36 | cfv | |
65 | 44 22 | cfv | |
66 | 63 65 64 | co | |
67 | 57 22 | cfv | |
68 | 60 67 66 | co | |
69 | 59 68 | cop | |
70 | 41 46 45 47 69 | cmpo | |
71 | 38 40 39 12 70 | cmpo | |
72 | 37 71 | cop | |
73 | 32 35 72 | ctp | |
74 | 29 28 73 | csb | |
75 | 10 9 74 | csb | |
76 | 1 3 2 2 75 | cmpo | |
77 | 0 76 | wceq | |