Metamath Proof Explorer


Definition df-xpc

Description: Define the binary product of categories, which has objects for each pair of objects of the factors, and morphisms for each pair of morphisms of the factors. Composition is componentwise. (Contributed by Mario Carneiro, 10-Jan-2017)

Ref Expression
Assertion df-xpc ×c=rV,sVBaser×Bases/bub,vb1stuHomr1stv×2nduHoms2ndv/hBasendxbHomndxhcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxpc class×c
1 vr setvarr
2 cvv classV
3 vs setvars
4 cbs classBase
5 1 cv setvarr
6 5 4 cfv classBaser
7 3 cv setvars
8 7 4 cfv classBases
9 6 8 cxp classBaser×Bases
10 vb setvarb
11 vu setvaru
12 10 cv setvarb
13 vv setvarv
14 c1st class1st
15 11 cv setvaru
16 15 14 cfv class1stu
17 chom classHom
18 5 17 cfv classHomr
19 13 cv setvarv
20 19 14 cfv class1stv
21 16 20 18 co class1stuHomr1stv
22 c2nd class2nd
23 15 22 cfv class2ndu
24 7 17 cfv classHoms
25 19 22 cfv class2ndv
26 23 25 24 co class2nduHoms2ndv
27 21 26 cxp class1stuHomr1stv×2nduHoms2ndv
28 11 13 12 12 27 cmpo classub,vb1stuHomr1stv×2nduHoms2ndv
29 vh setvarh
30 cnx classndx
31 30 4 cfv classBasendx
32 31 12 cop classBasendxb
33 30 17 cfv classHomndx
34 29 cv setvarh
35 33 34 cop classHomndxh
36 cco classcomp
37 30 36 cfv classcompndx
38 vx setvarx
39 12 12 cxp classb×b
40 vy setvary
41 vg setvarg
42 38 cv setvarx
43 42 22 cfv class2ndx
44 40 cv setvary
45 43 44 34 co class2ndxhy
46 vf setvarf
47 42 34 cfv classhx
48 41 cv setvarg
49 48 14 cfv class1stg
50 42 14 cfv class1stx
51 50 14 cfv class1st1stx
52 43 14 cfv class1st2ndx
53 51 52 cop class1st1stx1st2ndx
54 5 36 cfv classcompr
55 44 14 cfv class1sty
56 53 55 54 co class1st1stx1st2ndxcompr1sty
57 46 cv setvarf
58 57 14 cfv class1stf
59 49 58 56 co class1stg1st1stx1st2ndxcompr1sty1stf
60 48 22 cfv class2ndg
61 50 22 cfv class2nd1stx
62 43 22 cfv class2nd2ndx
63 61 62 cop class2nd1stx2nd2ndx
64 7 36 cfv classcomps
65 44 22 cfv class2ndy
66 63 65 64 co class2nd1stx2nd2ndxcomps2ndy
67 57 22 cfv class2ndf
68 60 67 66 co class2ndg2nd1stx2nd2ndxcomps2ndy2ndf
69 59 68 cop class1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf
70 41 46 45 47 69 cmpo classg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf
71 38 40 39 12 70 cmpo classxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf
72 37 71 cop classcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf
73 32 35 72 ctp classBasendxbHomndxhcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf
74 29 28 73 csb classub,vb1stuHomr1stv×2nduHoms2ndv/hBasendxbHomndxhcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf
75 10 9 74 csb classBaser×Bases/bub,vb1stuHomr1stv×2nduHoms2ndv/hBasendxbHomndxhcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf
76 1 3 2 2 75 cmpo classrV,sVBaser×Bases/bub,vb1stuHomr1stv×2nduHoms2ndv/hBasendxbHomndxhcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf
77 0 76 wceq wff×c=rV,sVBaser×Bases/bub,vb1stuHomr1stv×2nduHoms2ndv/hBasendxbHomndxhcompndxxb×b,ybg2ndxhy,fhx1stg1st1stx1st2ndxcompr1sty1stf2ndg2nd1stx2nd2ndxcomps2ndy2ndf