Metamath Proof Explorer


Definition df-1stf

Description: Define the first projection functor out of the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Assertion df-1stf 1stF=rCat,sCatBaser×Bases/b1stbxb,yb1stxHomr×csy

Detailed syntax breakdown

Step Hyp Ref Expression
0 c1stf class1stF
1 vr setvarr
2 ccat classCat
3 vs setvars
4 cbs classBase
5 1 cv setvarr
6 5 4 cfv classBaser
7 3 cv setvars
8 7 4 cfv classBases
9 6 8 cxp classBaser×Bases
10 vb setvarb
11 c1st class1st
12 10 cv setvarb
13 11 12 cres class1stb
14 vx setvarx
15 vy setvary
16 14 cv setvarx
17 chom classHom
18 cxpc class×c
19 5 7 18 co classr×cs
20 19 17 cfv classHomr×cs
21 15 cv setvary
22 16 21 20 co classxHomr×csy
23 11 22 cres class1stxHomr×csy
24 14 15 12 12 23 cmpo classxb,yb1stxHomr×csy
25 13 24 cop class1stbxb,yb1stxHomr×csy
26 10 9 25 csb classBaser×Bases/b1stbxb,yb1stxHomr×csy
27 1 3 2 2 26 cmpo classrCat,sCatBaser×Bases/b1stbxb,yb1stxHomr×csy
28 0 27 wceq wff1stF=rCat,sCatBaser×Bases/b1stbxb,yb1stxHomr×csy