Metamath Proof Explorer


Definition df-2ndf

Description: Define the second projection functor out of the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Assertion df-2ndf 2ndF=rCat,sCatBaser×Bases/b2ndbxb,yb2ndxHomr×csy

Detailed syntax breakdown

Step Hyp Ref Expression
0 c2ndf class2ndF
1 vr setvarr
2 ccat classCat
3 vs setvars
4 cbs classBase
5 1 cv setvarr
6 5 4 cfv classBaser
7 3 cv setvars
8 7 4 cfv classBases
9 6 8 cxp classBaser×Bases
10 vb setvarb
11 c2nd class2nd
12 10 cv setvarb
13 11 12 cres class2ndb
14 vx setvarx
15 vy setvary
16 14 cv setvarx
17 chom classHom
18 cxpc class×c
19 5 7 18 co classr×cs
20 19 17 cfv classHomr×cs
21 15 cv setvary
22 16 21 20 co classxHomr×csy
23 11 22 cres class2ndxHomr×csy
24 14 15 12 12 23 cmpo classxb,yb2ndxHomr×csy
25 13 24 cop class2ndbxb,yb2ndxHomr×csy
26 10 9 25 csb classBaser×Bases/b2ndbxb,yb2ndxHomr×csy
27 1 3 2 2 26 cmpo classrCat,sCatBaser×Bases/b2ndbxb,yb2ndxHomr×csy
28 0 27 wceq wff2ndF=rCat,sCatBaser×Bases/b2ndbxb,yb2ndxHomr×csy