Metamath Proof Explorer


Definition df-xpc

Description: Define the binary product of categories, which has objects for each pair of objects of the factors, and morphisms for each pair of morphisms of the factors. Composition is componentwise. (Contributed by Mario Carneiro, 10-Jan-2017)

Ref Expression
Assertion df-xpc × c = r V , s V Base r × Base s / b u b , v b 1 st u Hom r 1 st v × 2 nd u Hom s 2 nd v / h Base ndx b Hom ndx h comp ndx x b × b , y b g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxpc class × c
1 vr setvar r
2 cvv class V
3 vs setvar s
4 cbs class Base
5 1 cv setvar r
6 5 4 cfv class Base r
7 3 cv setvar s
8 7 4 cfv class Base s
9 6 8 cxp class Base r × Base s
10 vb setvar b
11 vu setvar u
12 10 cv setvar b
13 vv setvar v
14 c1st class 1 st
15 11 cv setvar u
16 15 14 cfv class 1 st u
17 chom class Hom
18 5 17 cfv class Hom r
19 13 cv setvar v
20 19 14 cfv class 1 st v
21 16 20 18 co class 1 st u Hom r 1 st v
22 c2nd class 2 nd
23 15 22 cfv class 2 nd u
24 7 17 cfv class Hom s
25 19 22 cfv class 2 nd v
26 23 25 24 co class 2 nd u Hom s 2 nd v
27 21 26 cxp class 1 st u Hom r 1 st v × 2 nd u Hom s 2 nd v
28 11 13 12 12 27 cmpo class u b , v b 1 st u Hom r 1 st v × 2 nd u Hom s 2 nd v
29 vh setvar h
30 cnx class ndx
31 30 4 cfv class Base ndx
32 31 12 cop class Base ndx b
33 30 17 cfv class Hom ndx
34 29 cv setvar h
35 33 34 cop class Hom ndx h
36 cco class comp
37 30 36 cfv class comp ndx
38 vx setvar x
39 12 12 cxp class b × b
40 vy setvar y
41 vg setvar g
42 38 cv setvar x
43 42 22 cfv class 2 nd x
44 40 cv setvar y
45 43 44 34 co class 2 nd x h y
46 vf setvar f
47 42 34 cfv class h x
48 41 cv setvar g
49 48 14 cfv class 1 st g
50 42 14 cfv class 1 st x
51 50 14 cfv class 1 st 1 st x
52 43 14 cfv class 1 st 2 nd x
53 51 52 cop class 1 st 1 st x 1 st 2 nd x
54 5 36 cfv class comp r
55 44 14 cfv class 1 st y
56 53 55 54 co class 1 st 1 st x 1 st 2 nd x comp r 1 st y
57 46 cv setvar f
58 57 14 cfv class 1 st f
59 49 58 56 co class 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f
60 48 22 cfv class 2 nd g
61 50 22 cfv class 2 nd 1 st x
62 43 22 cfv class 2 nd 2 nd x
63 61 62 cop class 2 nd 1 st x 2 nd 2 nd x
64 7 36 cfv class comp s
65 44 22 cfv class 2 nd y
66 63 65 64 co class 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y
67 57 22 cfv class 2 nd f
68 60 67 66 co class 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f
69 59 68 cop class 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f
70 41 46 45 47 69 cmpo class g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f
71 38 40 39 12 70 cmpo class x b × b , y b g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f
72 37 71 cop class comp ndx x b × b , y b g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f
73 32 35 72 ctp class Base ndx b Hom ndx h comp ndx x b × b , y b g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f
74 29 28 73 csb class u b , v b 1 st u Hom r 1 st v × 2 nd u Hom s 2 nd v / h Base ndx b Hom ndx h comp ndx x b × b , y b g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f
75 10 9 74 csb class Base r × Base s / b u b , v b 1 st u Hom r 1 st v × 2 nd u Hom s 2 nd v / h Base ndx b Hom ndx h comp ndx x b × b , y b g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f
76 1 3 2 2 75 cmpo class r V , s V Base r × Base s / b u b , v b 1 st u Hom r 1 st v × 2 nd u Hom s 2 nd v / h Base ndx b Hom ndx h comp ndx x b × b , y b g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f
77 0 76 wceq wff × c = r V , s V Base r × Base s / b u b , v b 1 st u Hom r 1 st v × 2 nd u Hom s 2 nd v / h Base ndx b Hom ndx h comp ndx x b × b , y b g 2 nd x h y , f h x 1 st g 1 st 1 st x 1 st 2 nd x comp r 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp s 2 nd y 2 nd f