Description: The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpccat.t | ⊢ 𝑇 = ( 𝐶 ×c 𝐷 ) | |
xpccat.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
xpccat.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
Assertion | xpccat | ⊢ ( 𝜑 → 𝑇 ∈ Cat ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpccat.t | ⊢ 𝑇 = ( 𝐶 ×c 𝐷 ) | |
2 | xpccat.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
3 | xpccat.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
5 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
6 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
7 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
8 | 1 2 3 4 5 6 7 | xpccatid | ⊢ ( 𝜑 → ( 𝑇 ∈ Cat ∧ ( Id ‘ 𝑇 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) ) ) |
9 | 8 | simpld | ⊢ ( 𝜑 → 𝑇 ∈ Cat ) |