Metamath Proof Explorer


Theorem xpccat

Description: The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpccat.t 𝑇 = ( 𝐶 ×c 𝐷 )
xpccat.c ( 𝜑𝐶 ∈ Cat )
xpccat.d ( 𝜑𝐷 ∈ Cat )
Assertion xpccat ( 𝜑𝑇 ∈ Cat )

Proof

Step Hyp Ref Expression
1 xpccat.t 𝑇 = ( 𝐶 ×c 𝐷 )
2 xpccat.c ( 𝜑𝐶 ∈ Cat )
3 xpccat.d ( 𝜑𝐷 ∈ Cat )
4 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
5 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
6 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
7 eqid ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 )
8 1 2 3 4 5 6 7 xpccatid ( 𝜑 → ( 𝑇 ∈ Cat ∧ ( Id ‘ 𝑇 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ⟩ ) ) )
9 8 simpld ( 𝜑𝑇 ∈ Cat )