Metamath Proof Explorer


Theorem xpccatid

Description: The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpccat.t 𝑇 = ( 𝐶 ×c 𝐷 )
xpccat.c ( 𝜑𝐶 ∈ Cat )
xpccat.d ( 𝜑𝐷 ∈ Cat )
xpccat.x 𝑋 = ( Base ‘ 𝐶 )
xpccat.y 𝑌 = ( Base ‘ 𝐷 )
xpccat.i 𝐼 = ( Id ‘ 𝐶 )
xpccat.j 𝐽 = ( Id ‘ 𝐷 )
Assertion xpccatid ( 𝜑 → ( 𝑇 ∈ Cat ∧ ( Id ‘ 𝑇 ) = ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐼𝑥 ) , ( 𝐽𝑦 ) ⟩ ) ) )

Proof

Step Hyp Ref Expression
1 xpccat.t 𝑇 = ( 𝐶 ×c 𝐷 )
2 xpccat.c ( 𝜑𝐶 ∈ Cat )
3 xpccat.d ( 𝜑𝐷 ∈ Cat )
4 xpccat.x 𝑋 = ( Base ‘ 𝐶 )
5 xpccat.y 𝑌 = ( Base ‘ 𝐷 )
6 xpccat.i 𝐼 = ( Id ‘ 𝐶 )
7 xpccat.j 𝐽 = ( Id ‘ 𝐷 )
8 1 4 5 xpcbas ( 𝑋 × 𝑌 ) = ( Base ‘ 𝑇 )
9 8 a1i ( 𝜑 → ( 𝑋 × 𝑌 ) = ( Base ‘ 𝑇 ) )
10 eqidd ( 𝜑 → ( Hom ‘ 𝑇 ) = ( Hom ‘ 𝑇 ) )
11 eqidd ( 𝜑 → ( comp ‘ 𝑇 ) = ( comp ‘ 𝑇 ) )
12 1 ovexi 𝑇 ∈ V
13 12 a1i ( 𝜑𝑇 ∈ V )
14 biid ( ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ↔ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) )
15 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
16 2 adantr ( ( 𝜑𝑡 ∈ ( 𝑋 × 𝑌 ) ) → 𝐶 ∈ Cat )
17 xp1st ( 𝑡 ∈ ( 𝑋 × 𝑌 ) → ( 1st𝑡 ) ∈ 𝑋 )
18 17 adantl ( ( 𝜑𝑡 ∈ ( 𝑋 × 𝑌 ) ) → ( 1st𝑡 ) ∈ 𝑋 )
19 4 15 6 16 18 catidcl ( ( 𝜑𝑡 ∈ ( 𝑋 × 𝑌 ) ) → ( 𝐼 ‘ ( 1st𝑡 ) ) ∈ ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑡 ) ) )
20 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
21 3 adantr ( ( 𝜑𝑡 ∈ ( 𝑋 × 𝑌 ) ) → 𝐷 ∈ Cat )
22 xp2nd ( 𝑡 ∈ ( 𝑋 × 𝑌 ) → ( 2nd𝑡 ) ∈ 𝑌 )
23 22 adantl ( ( 𝜑𝑡 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd𝑡 ) ∈ 𝑌 )
24 5 20 7 21 23 catidcl ( ( 𝜑𝑡 ∈ ( 𝑋 × 𝑌 ) ) → ( 𝐽 ‘ ( 2nd𝑡 ) ) ∈ ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑡 ) ) )
25 19 24 opelxpd ( ( 𝜑𝑡 ∈ ( 𝑋 × 𝑌 ) ) → ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ∈ ( ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑡 ) ) × ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑡 ) ) ) )
26 eqid ( Hom ‘ 𝑇 ) = ( Hom ‘ 𝑇 )
27 simpr ( ( 𝜑𝑡 ∈ ( 𝑋 × 𝑌 ) ) → 𝑡 ∈ ( 𝑋 × 𝑌 ) )
28 1 8 15 20 26 27 27 xpchom ( ( 𝜑𝑡 ∈ ( 𝑋 × 𝑌 ) ) → ( 𝑡 ( Hom ‘ 𝑇 ) 𝑡 ) = ( ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑡 ) ) × ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑡 ) ) ) )
29 25 28 eleqtrrd ( ( 𝜑𝑡 ∈ ( 𝑋 × 𝑌 ) ) → ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑡 ) )
30 fvex ( 𝐼 ‘ ( 1st𝑡 ) ) ∈ V
31 fvex ( 𝐽 ‘ ( 2nd𝑡 ) ) ∈ V
32 30 31 op1st ( 1st ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) = ( 𝐼 ‘ ( 1st𝑡 ) )
33 32 oveq1i ( ( 1st ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑡 ) ) ( 1st𝑓 ) ) = ( ( 𝐼 ‘ ( 1st𝑡 ) ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑡 ) ) ( 1st𝑓 ) )
34 2 adantr ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → 𝐶 ∈ Cat )
35 simpr1l ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → 𝑠 ∈ ( 𝑋 × 𝑌 ) )
36 xp1st ( 𝑠 ∈ ( 𝑋 × 𝑌 ) → ( 1st𝑠 ) ∈ 𝑋 )
37 35 36 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 1st𝑠 ) ∈ 𝑋 )
38 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
39 simpr1r ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → 𝑡 ∈ ( 𝑋 × 𝑌 ) )
40 39 17 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 1st𝑡 ) ∈ 𝑋 )
41 simpr31 ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) )
42 1 8 15 20 26 35 39 xpchom ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) = ( ( ( 1st𝑠 ) ( Hom ‘ 𝐶 ) ( 1st𝑡 ) ) × ( ( 2nd𝑠 ) ( Hom ‘ 𝐷 ) ( 2nd𝑡 ) ) ) )
43 41 42 eleqtrd ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → 𝑓 ∈ ( ( ( 1st𝑠 ) ( Hom ‘ 𝐶 ) ( 1st𝑡 ) ) × ( ( 2nd𝑠 ) ( Hom ‘ 𝐷 ) ( 2nd𝑡 ) ) ) )
44 xp1st ( 𝑓 ∈ ( ( ( 1st𝑠 ) ( Hom ‘ 𝐶 ) ( 1st𝑡 ) ) × ( ( 2nd𝑠 ) ( Hom ‘ 𝐷 ) ( 2nd𝑡 ) ) ) → ( 1st𝑓 ) ∈ ( ( 1st𝑠 ) ( Hom ‘ 𝐶 ) ( 1st𝑡 ) ) )
45 43 44 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 1st𝑓 ) ∈ ( ( 1st𝑠 ) ( Hom ‘ 𝐶 ) ( 1st𝑡 ) ) )
46 4 15 6 34 37 38 40 45 catlid ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 𝐼 ‘ ( 1st𝑡 ) ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑡 ) ) ( 1st𝑓 ) ) = ( 1st𝑓 ) )
47 33 46 syl5eq ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 1st ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑡 ) ) ( 1st𝑓 ) ) = ( 1st𝑓 ) )
48 30 31 op2nd ( 2nd ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) = ( 𝐽 ‘ ( 2nd𝑡 ) )
49 48 oveq1i ( ( 2nd ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑡 ) ) ( 2nd𝑓 ) ) = ( ( 𝐽 ‘ ( 2nd𝑡 ) ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑡 ) ) ( 2nd𝑓 ) )
50 3 adantr ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → 𝐷 ∈ Cat )
51 xp2nd ( 𝑠 ∈ ( 𝑋 × 𝑌 ) → ( 2nd𝑠 ) ∈ 𝑌 )
52 35 51 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 2nd𝑠 ) ∈ 𝑌 )
53 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
54 39 22 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 2nd𝑡 ) ∈ 𝑌 )
55 xp2nd ( 𝑓 ∈ ( ( ( 1st𝑠 ) ( Hom ‘ 𝐶 ) ( 1st𝑡 ) ) × ( ( 2nd𝑠 ) ( Hom ‘ 𝐷 ) ( 2nd𝑡 ) ) ) → ( 2nd𝑓 ) ∈ ( ( 2nd𝑠 ) ( Hom ‘ 𝐷 ) ( 2nd𝑡 ) ) )
56 43 55 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 2nd𝑓 ) ∈ ( ( 2nd𝑠 ) ( Hom ‘ 𝐷 ) ( 2nd𝑡 ) ) )
57 5 20 7 50 52 53 54 56 catlid ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 𝐽 ‘ ( 2nd𝑡 ) ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑡 ) ) ( 2nd𝑓 ) ) = ( 2nd𝑓 ) )
58 49 57 syl5eq ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 2nd ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑡 ) ) ( 2nd𝑓 ) ) = ( 2nd𝑓 ) )
59 47 58 opeq12d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ⟨ ( ( 1st ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑡 ) ) ( 1st𝑓 ) ) , ( ( 2nd ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑡 ) ) ( 2nd𝑓 ) ) ⟩ = ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ )
60 eqid ( comp ‘ 𝑇 ) = ( comp ‘ 𝑇 )
61 39 29 syldan ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑡 ) )
62 1 8 26 38 53 60 35 39 39 41 61 xpcco ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑡 ) 𝑓 ) = ⟨ ( ( 1st ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑡 ) ) ( 1st𝑓 ) ) , ( ( 2nd ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑡 ) ) ( 2nd𝑓 ) ) ⟩ )
63 1st2nd2 ( 𝑓 ∈ ( ( ( 1st𝑠 ) ( Hom ‘ 𝐶 ) ( 1st𝑡 ) ) × ( ( 2nd𝑠 ) ( Hom ‘ 𝐷 ) ( 2nd𝑡 ) ) ) → 𝑓 = ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ )
64 43 63 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → 𝑓 = ⟨ ( 1st𝑓 ) , ( 2nd𝑓 ) ⟩ )
65 59 62 64 3eqtr4d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑡 ) 𝑓 ) = 𝑓 )
66 32 oveq2i ( ( 1st𝑔 ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ) = ( ( 1st𝑔 ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 𝐼 ‘ ( 1st𝑡 ) ) )
67 simpr2l ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → 𝑢 ∈ ( 𝑋 × 𝑌 ) )
68 xp1st ( 𝑢 ∈ ( 𝑋 × 𝑌 ) → ( 1st𝑢 ) ∈ 𝑋 )
69 67 68 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 1st𝑢 ) ∈ 𝑋 )
70 simpr32 ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) )
71 1 8 15 20 26 39 67 xpchom ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) = ( ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑢 ) ) × ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑢 ) ) ) )
72 70 71 eleqtrd ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → 𝑔 ∈ ( ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑢 ) ) × ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑢 ) ) ) )
73 xp1st ( 𝑔 ∈ ( ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑢 ) ) × ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑢 ) ) ) → ( 1st𝑔 ) ∈ ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑢 ) ) )
74 72 73 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 1st𝑔 ) ∈ ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑢 ) ) )
75 4 15 6 34 40 38 69 74 catrid ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 1st𝑔 ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 𝐼 ‘ ( 1st𝑡 ) ) ) = ( 1st𝑔 ) )
76 66 75 syl5eq ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 1st𝑔 ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ) = ( 1st𝑔 ) )
77 48 oveq2i ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ) = ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 𝐽 ‘ ( 2nd𝑡 ) ) )
78 xp2nd ( 𝑢 ∈ ( 𝑋 × 𝑌 ) → ( 2nd𝑢 ) ∈ 𝑌 )
79 67 78 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 2nd𝑢 ) ∈ 𝑌 )
80 xp2nd ( 𝑔 ∈ ( ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑢 ) ) × ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑢 ) ) ) → ( 2nd𝑔 ) ∈ ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑢 ) ) )
81 72 80 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 2nd𝑔 ) ∈ ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑢 ) ) )
82 5 20 7 50 54 53 79 81 catrid ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 𝐽 ‘ ( 2nd𝑡 ) ) ) = ( 2nd𝑔 ) )
83 77 82 syl5eq ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ) = ( 2nd𝑔 ) )
84 76 83 opeq12d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ⟨ ( ( 1st𝑔 ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ) ⟩ = ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ )
85 1 8 26 38 53 60 39 39 67 61 70 xpcco ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 𝑔 ( ⟨ 𝑡 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) = ⟨ ( ( 1st𝑔 ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd ‘ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ) ⟩ )
86 1st2nd2 ( 𝑔 ∈ ( ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑢 ) ) × ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑢 ) ) ) → 𝑔 = ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ )
87 72 86 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → 𝑔 = ⟨ ( 1st𝑔 ) , ( 2nd𝑔 ) ⟩ )
88 84 85 87 3eqtr4d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 𝑔 ( ⟨ 𝑡 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) = 𝑔 )
89 4 15 38 34 37 40 69 45 74 catcocl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 1st𝑔 ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st𝑓 ) ) ∈ ( ( 1st𝑠 ) ( Hom ‘ 𝐶 ) ( 1st𝑢 ) ) )
90 5 20 53 50 52 54 79 56 81 catcocl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd𝑓 ) ) ∈ ( ( 2nd𝑠 ) ( Hom ‘ 𝐷 ) ( 2nd𝑢 ) ) )
91 89 90 opelxpd ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ⟨ ( ( 1st𝑔 ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st𝑓 ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd𝑓 ) ) ⟩ ∈ ( ( ( 1st𝑠 ) ( Hom ‘ 𝐶 ) ( 1st𝑢 ) ) × ( ( 2nd𝑠 ) ( Hom ‘ 𝐷 ) ( 2nd𝑢 ) ) ) )
92 1 8 26 38 53 60 35 39 67 41 70 xpcco ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) = ⟨ ( ( 1st𝑔 ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st𝑓 ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd𝑓 ) ) ⟩ )
93 1 8 15 20 26 35 67 xpchom ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 𝑠 ( Hom ‘ 𝑇 ) 𝑢 ) = ( ( ( 1st𝑠 ) ( Hom ‘ 𝐶 ) ( 1st𝑢 ) ) × ( ( 2nd𝑠 ) ( Hom ‘ 𝐷 ) ( 2nd𝑢 ) ) ) )
94 91 92 93 3eltr4d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑢 ) )
95 simpr2r ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → 𝑣 ∈ ( 𝑋 × 𝑌 ) )
96 xp1st ( 𝑣 ∈ ( 𝑋 × 𝑌 ) → ( 1st𝑣 ) ∈ 𝑋 )
97 95 96 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 1st𝑣 ) ∈ 𝑋 )
98 simpr33 ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) )
99 1 8 15 20 26 67 95 xpchom ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) = ( ( ( 1st𝑢 ) ( Hom ‘ 𝐶 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd𝑣 ) ) ) )
100 98 99 eleqtrd ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ∈ ( ( ( 1st𝑢 ) ( Hom ‘ 𝐶 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd𝑣 ) ) ) )
101 xp1st ( ∈ ( ( ( 1st𝑢 ) ( Hom ‘ 𝐶 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd𝑣 ) ) ) → ( 1st ) ∈ ( ( 1st𝑢 ) ( Hom ‘ 𝐶 ) ( 1st𝑣 ) ) )
102 100 101 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 1st ) ∈ ( ( 1st𝑢 ) ( Hom ‘ 𝐶 ) ( 1st𝑣 ) ) )
103 4 15 38 34 37 40 69 45 74 97 102 catass ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( ( 1st ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑔 ) ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑓 ) ) = ( ( 1st ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( ( 1st𝑔 ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st𝑓 ) ) ) )
104 1 8 26 38 53 60 39 67 95 70 98 xpcco ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) = ⟨ ( ( 1st ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑔 ) ) , ( ( 2nd ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑔 ) ) ⟩ )
105 104 fveq2d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 1st ‘ ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ) = ( 1st ‘ ⟨ ( ( 1st ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑔 ) ) , ( ( 2nd ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑔 ) ) ⟩ ) )
106 ovex ( ( 1st ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑔 ) ) ∈ V
107 ovex ( ( 2nd ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑔 ) ) ∈ V
108 106 107 op1st ( 1st ‘ ⟨ ( ( 1st ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑔 ) ) , ( ( 2nd ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑔 ) ) ⟩ ) = ( ( 1st ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑔 ) )
109 105 108 eqtrdi ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 1st ‘ ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ) = ( ( 1st ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑔 ) ) )
110 109 oveq1d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 1st ‘ ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑓 ) ) = ( ( ( 1st ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑔 ) ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑓 ) ) )
111 92 fveq2d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 1st ‘ ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) = ( 1st ‘ ⟨ ( ( 1st𝑔 ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st𝑓 ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd𝑓 ) ) ⟩ ) )
112 ovex ( ( 1st𝑔 ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st𝑓 ) ) ∈ V
113 ovex ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd𝑓 ) ) ∈ V
114 112 113 op1st ( 1st ‘ ⟨ ( ( 1st𝑔 ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st𝑓 ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd𝑓 ) ) ⟩ ) = ( ( 1st𝑔 ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st𝑓 ) )
115 111 114 eqtrdi ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 1st ‘ ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) = ( ( 1st𝑔 ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st𝑓 ) ) )
116 115 oveq2d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 1st ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st ‘ ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) ) = ( ( 1st ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( ( 1st𝑔 ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st𝑓 ) ) ) )
117 103 110 116 3eqtr4d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 1st ‘ ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑓 ) ) = ( ( 1st ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st ‘ ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) ) )
118 xp2nd ( 𝑣 ∈ ( 𝑋 × 𝑌 ) → ( 2nd𝑣 ) ∈ 𝑌 )
119 95 118 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 2nd𝑣 ) ∈ 𝑌 )
120 xp2nd ( ∈ ( ( ( 1st𝑢 ) ( Hom ‘ 𝐶 ) ( 1st𝑣 ) ) × ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd𝑣 ) ) ) → ( 2nd ) ∈ ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd𝑣 ) ) )
121 100 120 syl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 2nd ) ∈ ( ( 2nd𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd𝑣 ) ) )
122 5 20 53 50 52 54 79 56 81 119 121 catass ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( ( 2nd ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑔 ) ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑓 ) ) = ( ( 2nd ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd𝑓 ) ) ) )
123 104 fveq2d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 2nd ‘ ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ) = ( 2nd ‘ ⟨ ( ( 1st ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑔 ) ) , ( ( 2nd ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑔 ) ) ⟩ ) )
124 106 107 op2nd ( 2nd ‘ ⟨ ( ( 1st ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑔 ) ) , ( ( 2nd ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑔 ) ) ⟩ ) = ( ( 2nd ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑔 ) )
125 123 124 eqtrdi ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 2nd ‘ ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ) = ( ( 2nd ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑔 ) ) )
126 125 oveq1d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 2nd ‘ ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑓 ) ) = ( ( ( 2nd ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑔 ) ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑓 ) ) )
127 92 fveq2d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 2nd ‘ ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) = ( 2nd ‘ ⟨ ( ( 1st𝑔 ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st𝑓 ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd𝑓 ) ) ⟩ ) )
128 112 113 op2nd ( 2nd ‘ ⟨ ( ( 1st𝑔 ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑢 ) ) ( 1st𝑓 ) ) , ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd𝑓 ) ) ⟩ ) = ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd𝑓 ) )
129 127 128 eqtrdi ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 2nd ‘ ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) = ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd𝑓 ) ) )
130 129 oveq2d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 2nd ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd ‘ ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) ) = ( ( 2nd ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( ( 2nd𝑔 ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑢 ) ) ( 2nd𝑓 ) ) ) )
131 122 126 130 3eqtr4d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 2nd ‘ ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑓 ) ) = ( ( 2nd ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd ‘ ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) ) )
132 117 131 opeq12d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ⟨ ( ( 1st ‘ ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑓 ) ) , ( ( 2nd ‘ ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑓 ) ) ⟩ = ⟨ ( ( 1st ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st ‘ ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) ) , ( ( 2nd ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd ‘ ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) ) ⟩ )
133 4 15 38 34 40 69 97 74 102 catcocl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 1st ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑔 ) ) ∈ ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑣 ) ) )
134 5 20 53 50 54 79 119 81 121 catcocl ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( 2nd ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑔 ) ) ∈ ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑣 ) ) )
135 133 134 opelxpd ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ⟨ ( ( 1st ) ( ⟨ ( 1st𝑡 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑔 ) ) , ( ( 2nd ) ( ⟨ ( 2nd𝑡 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑔 ) ) ⟩ ∈ ( ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑣 ) ) × ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑣 ) ) ) )
136 1 8 15 20 26 39 95 xpchom ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( 𝑡 ( Hom ‘ 𝑇 ) 𝑣 ) = ( ( ( 1st𝑡 ) ( Hom ‘ 𝐶 ) ( 1st𝑣 ) ) × ( ( 2nd𝑡 ) ( Hom ‘ 𝐷 ) ( 2nd𝑣 ) ) ) )
137 135 104 136 3eltr4d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑣 ) )
138 1 8 26 38 53 60 35 39 95 41 137 xpcco ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑓 ) = ⟨ ( ( 1st ‘ ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑡 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st𝑓 ) ) , ( ( 2nd ‘ ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑡 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd𝑓 ) ) ⟩ )
139 1 8 26 38 53 60 35 67 95 94 98 xpcco ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( ⟨ 𝑠 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) = ⟨ ( ( 1st ) ( ⟨ ( 1st𝑠 ) , ( 1st𝑢 ) ⟩ ( comp ‘ 𝐶 ) ( 1st𝑣 ) ) ( 1st ‘ ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) ) , ( ( 2nd ) ( ⟨ ( 2nd𝑠 ) , ( 2nd𝑢 ) ⟩ ( comp ‘ 𝐷 ) ( 2nd𝑣 ) ) ( 2nd ‘ ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) ) ⟩ )
140 132 138 139 3eqtr4d ( ( 𝜑 ∧ ( ( 𝑠 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑡 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) ∧ ( 𝑓 ∈ ( 𝑠 ( Hom ‘ 𝑇 ) 𝑡 ) ∧ 𝑔 ∈ ( 𝑡 ( Hom ‘ 𝑇 ) 𝑢 ) ∧ ∈ ( 𝑢 ( Hom ‘ 𝑇 ) 𝑣 ) ) ) ) → ( ( ( ⟨ 𝑡 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑔 ) ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) 𝑓 ) = ( ( ⟨ 𝑠 , 𝑢 ⟩ ( comp ‘ 𝑇 ) 𝑣 ) ( 𝑔 ( ⟨ 𝑠 , 𝑡 ⟩ ( comp ‘ 𝑇 ) 𝑢 ) 𝑓 ) ) )
141 9 10 11 13 14 29 65 88 94 140 iscatd2 ( 𝜑 → ( 𝑇 ∈ Cat ∧ ( Id ‘ 𝑇 ) = ( 𝑡 ∈ ( 𝑋 × 𝑌 ) ↦ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ) )
142 vex 𝑥 ∈ V
143 vex 𝑦 ∈ V
144 142 143 op1std ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( 1st𝑡 ) = 𝑥 )
145 144 fveq2d ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐼 ‘ ( 1st𝑡 ) ) = ( 𝐼𝑥 ) )
146 142 143 op2ndd ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( 2nd𝑡 ) = 𝑦 )
147 146 fveq2d ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐽 ‘ ( 2nd𝑡 ) ) = ( 𝐽𝑦 ) )
148 145 147 opeq12d ( 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ → ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ = ⟨ ( 𝐼𝑥 ) , ( 𝐽𝑦 ) ⟩ )
149 148 mpompt ( 𝑡 ∈ ( 𝑋 × 𝑌 ) ↦ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) = ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐼𝑥 ) , ( 𝐽𝑦 ) ⟩ )
150 149 eqeq2i ( ( Id ‘ 𝑇 ) = ( 𝑡 ∈ ( 𝑋 × 𝑌 ) ↦ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ↔ ( Id ‘ 𝑇 ) = ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐼𝑥 ) , ( 𝐽𝑦 ) ⟩ ) )
151 150 anbi2i ( ( 𝑇 ∈ Cat ∧ ( Id ‘ 𝑇 ) = ( 𝑡 ∈ ( 𝑋 × 𝑌 ) ↦ ⟨ ( 𝐼 ‘ ( 1st𝑡 ) ) , ( 𝐽 ‘ ( 2nd𝑡 ) ) ⟩ ) ) ↔ ( 𝑇 ∈ Cat ∧ ( Id ‘ 𝑇 ) = ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐼𝑥 ) , ( 𝐽𝑦 ) ⟩ ) ) )
152 141 151 sylib ( 𝜑 → ( 𝑇 ∈ Cat ∧ ( Id ‘ 𝑇 ) = ( 𝑥𝑋 , 𝑦𝑌 ↦ ⟨ ( 𝐼𝑥 ) , ( 𝐽𝑦 ) ⟩ ) ) )