| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscatd2.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 2 |
|
iscatd2.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) |
| 3 |
|
iscatd2.o |
⊢ ( 𝜑 → · = ( comp ‘ 𝐶 ) ) |
| 4 |
|
iscatd2.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 5 |
|
iscatd2.ps |
⊢ ( 𝜓 ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
| 6 |
|
iscatd2.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 1 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 7 |
|
iscatd2.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
| 8 |
|
iscatd2.3 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
| 9 |
|
iscatd2.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 10 |
|
iscatd2.5 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) |
| 11 |
6
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
| 12 |
11
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
| 13 |
|
n0 |
⊢ ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 14 |
12 13
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ∃ 𝑔 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 15 |
|
n0 |
⊢ ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ∃ 𝑘 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 16 |
12 15
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ∃ 𝑘 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 17 |
|
exdistrv |
⊢ ( ∃ 𝑔 ∃ 𝑘 ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ↔ ( ∃ 𝑔 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ ∃ 𝑘 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
| 18 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝜑 ) |
| 19 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑎 ∈ 𝐵 ) |
| 20 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 21 |
19 20
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 22 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) |
| 23 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 24 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 25 |
22 23 24
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
| 26 |
|
simplll |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 𝑥 = 𝑎 ) |
| 27 |
26
|
eleq1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
| 28 |
27
|
anbi1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 29 |
|
simpllr |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 𝑧 = 𝑦 ) |
| 30 |
29
|
eleq1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑧 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 31 |
|
simplr |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 𝑤 = 𝑦 ) |
| 32 |
31
|
eleq1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑤 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 33 |
30 32
|
anbi12d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 34 |
|
anidm |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ 𝑦 ∈ 𝐵 ) |
| 35 |
33 34
|
bitrdi |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ 𝑦 ∈ 𝐵 ) ) |
| 36 |
|
simpr |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 𝑓 = 𝑟 ) |
| 37 |
26
|
oveq1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑎 𝐻 𝑦 ) ) |
| 38 |
36 37
|
eleq12d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) |
| 39 |
29
|
oveq2d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑦 ) ) |
| 40 |
39
|
eleq2d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
| 41 |
29 31
|
oveq12d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑦 𝐻 𝑦 ) ) |
| 42 |
41
|
eleq2d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
| 43 |
38 40 42
|
3anbi123d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) |
| 44 |
28 35 43
|
3anbi123d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) ) |
| 45 |
5 44
|
bitrid |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝜓 ↔ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) ) |
| 46 |
45
|
anbi2d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) ) ) |
| 47 |
26
|
opeq1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑎 , 𝑦 〉 ) |
| 48 |
47
|
oveq1d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) = ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) ) |
| 49 |
|
eqidd |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 1 = 1 ) |
| 50 |
48 49 36
|
oveq123d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) ) |
| 51 |
50 36
|
eqeq12d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ↔ ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) |
| 52 |
46 51
|
imbi12d |
⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) ) |
| 53 |
52
|
sbiedvw |
⊢ ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) → ( [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) ) |
| 54 |
53
|
sbiedvw |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) → ( [ 𝑦 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) ) |
| 55 |
54
|
sbiedvw |
⊢ ( 𝑥 = 𝑎 → ( [ 𝑦 / 𝑧 ] [ 𝑦 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) ) |
| 56 |
7
|
sbt |
⊢ [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
| 57 |
56
|
sbt |
⊢ [ 𝑦 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
| 58 |
57
|
sbt |
⊢ [ 𝑦 / 𝑧 ] [ 𝑦 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
| 59 |
55 58
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) |
| 60 |
18 21 20 25 59
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) |
| 61 |
60
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) |
| 62 |
61
|
exlimdvv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( ∃ 𝑔 ∃ 𝑘 ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) |
| 63 |
17 62
|
biimtrrid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( ( ∃ 𝑔 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ ∃ 𝑘 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) |
| 64 |
14 16 63
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) |
| 65 |
11
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
| 66 |
|
n0 |
⊢ ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 67 |
65 66
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ∃ 𝑓 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 68 |
|
id |
⊢ ( 𝑦 = 𝑎 → 𝑦 = 𝑎 ) |
| 69 |
68 68
|
oveq12d |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 𝐻 𝑦 ) = ( 𝑎 𝐻 𝑎 ) ) |
| 70 |
69
|
neeq1d |
⊢ ( 𝑦 = 𝑎 → ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑎 𝐻 𝑎 ) ≠ ∅ ) ) |
| 71 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
| 73 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → 𝑎 ∈ 𝐵 ) |
| 74 |
70 72 73
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( 𝑎 𝐻 𝑎 ) ≠ ∅ ) |
| 75 |
|
n0 |
⊢ ( ( 𝑎 𝐻 𝑎 ) ≠ ∅ ↔ ∃ 𝑘 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) |
| 76 |
74 75
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ∃ 𝑘 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) |
| 77 |
|
exdistrv |
⊢ ( ∃ 𝑓 ∃ 𝑘 ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ ∃ 𝑘 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) |
| 78 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝜑 ) |
| 79 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 80 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑎 ∈ 𝐵 ) |
| 81 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 82 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) |
| 83 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) |
| 84 |
81 82 83
|
3jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) |
| 85 |
|
simplll |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 𝑥 = 𝑦 ) |
| 86 |
85
|
eleq1d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 87 |
86
|
anbi1d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 88 |
87 34
|
bitrdi |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ 𝑦 ∈ 𝐵 ) ) |
| 89 |
|
simpllr |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 𝑧 = 𝑎 ) |
| 90 |
89
|
eleq1d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑧 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
| 91 |
|
simplr |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 𝑤 = 𝑎 ) |
| 92 |
91
|
eleq1d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑤 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
| 93 |
90 92
|
anbi12d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) ) |
| 94 |
|
anidm |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ↔ 𝑎 ∈ 𝐵 ) |
| 95 |
93 94
|
bitrdi |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ 𝑎 ∈ 𝐵 ) ) |
| 96 |
85
|
oveq1d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑦 ) ) |
| 97 |
96
|
eleq2d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
| 98 |
|
simpr |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 𝑔 = 𝑟 ) |
| 99 |
89
|
oveq2d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑎 ) ) |
| 100 |
98 99
|
eleq12d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) |
| 101 |
89 91
|
oveq12d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑎 𝐻 𝑎 ) ) |
| 102 |
101
|
eleq2d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) |
| 103 |
97 100 102
|
3anbi123d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) |
| 104 |
88 95 103
|
3anbi123d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) ) |
| 105 |
5 104
|
bitrid |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝜓 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) ) |
| 106 |
105
|
anbi2d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) ) ) |
| 107 |
89
|
oveq2d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) ) |
| 108 |
|
eqidd |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 1 = 1 ) |
| 109 |
107 98 108
|
oveq123d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) ) |
| 110 |
109 98
|
eqeq12d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ↔ ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) |
| 111 |
106 110
|
imbi12d |
⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) ) |
| 112 |
111
|
sbiedvw |
⊢ ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) → ( [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) ) |
| 113 |
112
|
sbiedvw |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) → ( [ 𝑎 / 𝑤 ] [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) ) |
| 114 |
113
|
sbiedvw |
⊢ ( 𝑥 = 𝑦 → ( [ 𝑎 / 𝑧 ] [ 𝑎 / 𝑤 ] [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) ) |
| 115 |
8
|
sbt |
⊢ [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
| 116 |
115
|
sbt |
⊢ [ 𝑎 / 𝑤 ] [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
| 117 |
116
|
sbt |
⊢ [ 𝑎 / 𝑧 ] [ 𝑎 / 𝑤 ] [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
| 118 |
114 117
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) |
| 119 |
78 79 80 84 118
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) |
| 120 |
119
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) |
| 121 |
120
|
exlimdvv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( ∃ 𝑓 ∃ 𝑘 ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) |
| 122 |
77 121
|
biimtrrid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( ( ∃ 𝑓 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ ∃ 𝑘 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) |
| 123 |
67 76 122
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) |
| 124 |
|
id |
⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) |
| 125 |
124 124
|
oveq12d |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑧 ) ) |
| 126 |
125
|
neeq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑧 ) ≠ ∅ ) ) |
| 127 |
71
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
| 128 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝐵 ) |
| 129 |
126 127 128
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ( 𝑧 𝐻 𝑧 ) ≠ ∅ ) |
| 130 |
|
n0 |
⊢ ( ( 𝑧 𝐻 𝑧 ) ≠ ∅ ↔ ∃ 𝑘 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) |
| 131 |
129 130
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ∃ 𝑘 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) |
| 132 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 133 |
132
|
3anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 134 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐻 𝑎 ) = ( 𝑦 𝐻 𝑎 ) ) |
| 135 |
134
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ↔ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) |
| 136 |
135
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ↔ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) ) |
| 137 |
136
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ↔ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) |
| 138 |
133 137
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) |
| 139 |
138
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ↔ ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) ) |
| 140 |
|
opeq1 |
⊢ ( 𝑥 = 𝑦 → 〈 𝑥 , 𝑎 〉 = 〈 𝑦 , 𝑎 〉 ) |
| 141 |
140
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) = ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) ) |
| 142 |
141
|
oveqd |
⊢ ( 𝑥 = 𝑦 → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) = ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) |
| 143 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
| 144 |
142 143
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) |
| 145 |
139 144
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) ) |
| 146 |
|
df-3an |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
| 147 |
5 146
|
bitri |
⊢ ( 𝜓 ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
| 148 |
|
simpll |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 𝑦 = 𝑎 ) |
| 149 |
148
|
eleq1d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
| 150 |
149
|
anbi2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) ) |
| 151 |
|
simplr |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 𝑤 = 𝑧 ) |
| 152 |
151
|
eleq1d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑤 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
| 153 |
152
|
anbi2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 154 |
|
anidm |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ 𝑧 ∈ 𝐵 ) |
| 155 |
153 154
|
bitrdi |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ 𝑧 ∈ 𝐵 ) ) |
| 156 |
150 155
|
anbi12d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 157 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ) |
| 158 |
156 157
|
bitr4di |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 159 |
|
simpr |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 𝑓 = 𝑟 ) |
| 160 |
148
|
oveq2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑎 ) ) |
| 161 |
159 160
|
eleq12d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ) ) |
| 162 |
148
|
oveq1d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑎 𝐻 𝑧 ) ) |
| 163 |
162
|
eleq2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) |
| 164 |
151
|
oveq2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑧 𝐻 𝑧 ) ) |
| 165 |
164
|
eleq2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) |
| 166 |
161 163 165
|
3anbi123d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) |
| 167 |
|
df-3an |
⊢ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ↔ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) |
| 168 |
166 167
|
bitrdi |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) |
| 169 |
158 168
|
anbi12d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) |
| 170 |
147 169
|
bitrid |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝜓 ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) |
| 171 |
170
|
anbi2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) ) |
| 172 |
148
|
opeq2d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑎 〉 ) |
| 173 |
172
|
oveq1d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) ) |
| 174 |
|
eqidd |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 𝑔 = 𝑔 ) |
| 175 |
173 174 159
|
oveq123d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) |
| 176 |
175
|
eleq1d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
| 177 |
171 176
|
imbi12d |
⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) |
| 178 |
177
|
sbiedvw |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) → ( [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) |
| 179 |
178
|
sbiedvw |
⊢ ( 𝑦 = 𝑎 → ( [ 𝑧 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) |
| 180 |
9
|
sbt |
⊢ [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 181 |
180
|
sbt |
⊢ [ 𝑧 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 182 |
179 181
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 183 |
145 182
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) |
| 184 |
183
|
exp45 |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
| 185 |
184
|
3imp |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) |
| 186 |
185
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ( ∃ 𝑘 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) |
| 187 |
131 186
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) |
| 188 |
132
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) ) |
| 189 |
188
|
anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ) |
| 190 |
135
|
3anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
| 191 |
189 190
|
3anbi23d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
| 192 |
140
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) = ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) ) |
| 193 |
192
|
oveqd |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) 𝑟 ) ) |
| 194 |
|
opeq1 |
⊢ ( 𝑥 = 𝑦 → 〈 𝑥 , 𝑧 〉 = 〈 𝑦 , 𝑧 〉 ) |
| 195 |
194
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) = ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ) |
| 196 |
|
eqidd |
⊢ ( 𝑥 = 𝑦 → 𝑘 = 𝑘 ) |
| 197 |
195 196 142
|
oveq123d |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) |
| 198 |
193 197
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ↔ ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) |
| 199 |
191 198
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) ) |
| 200 |
|
simpl |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 𝑦 = 𝑎 ) |
| 201 |
200
|
eleq1d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
| 202 |
201
|
anbi2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) ) |
| 203 |
|
simpr |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 𝑓 = 𝑟 ) |
| 204 |
200
|
oveq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑎 ) ) |
| 205 |
203 204
|
eleq12d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ) ) |
| 206 |
200
|
oveq1d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑎 𝐻 𝑧 ) ) |
| 207 |
206
|
eleq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) |
| 208 |
205 207
|
3anbi12d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
| 209 |
202 208
|
3anbi13d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
| 210 |
5 209
|
bitrid |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝜓 ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
| 211 |
|
df-3an |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
| 212 |
210 211
|
bitrdi |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝜓 ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
| 213 |
212
|
anbi2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) ) |
| 214 |
|
3anass |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( 𝜑 ∧ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
| 215 |
213 214
|
bitr4di |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
| 216 |
200
|
opeq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑎 〉 ) |
| 217 |
216
|
oveq1d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) = ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) ) |
| 218 |
200
|
opeq1d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 〈 𝑦 , 𝑧 〉 = 〈 𝑎 , 𝑧 〉 ) |
| 219 |
218
|
oveq1d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) = ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) ) |
| 220 |
219
|
oveqd |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) = ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ) |
| 221 |
217 220 203
|
oveq123d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) ) |
| 222 |
216
|
oveq1d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) ) |
| 223 |
|
eqidd |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 𝑔 = 𝑔 ) |
| 224 |
222 223 203
|
oveq123d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) |
| 225 |
224
|
oveq2d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) |
| 226 |
221 225
|
eqeq12d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ↔ ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) |
| 227 |
215 226
|
imbi12d |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) ) |
| 228 |
227
|
sbiedvw |
⊢ ( 𝑦 = 𝑎 → ( [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) ) |
| 229 |
10
|
sbt |
⊢ [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) |
| 230 |
228 229
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) |
| 231 |
199 230
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) |
| 232 |
1 2 3 4 6 64 123 187 231
|
iscatd |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 233 |
1 2 3 232 6 64 123
|
catidd |
⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ 1 ) ) |
| 234 |
232 233
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ 1 ) ) ) |