Metamath Proof Explorer


Theorem xpccatid

Description: The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpccat.t T = C × c D
xpccat.c φ C Cat
xpccat.d φ D Cat
xpccat.x X = Base C
xpccat.y Y = Base D
xpccat.i I = Id C
xpccat.j J = Id D
Assertion xpccatid φ T Cat Id T = x X , y Y I x J y

Proof

Step Hyp Ref Expression
1 xpccat.t T = C × c D
2 xpccat.c φ C Cat
3 xpccat.d φ D Cat
4 xpccat.x X = Base C
5 xpccat.y Y = Base D
6 xpccat.i I = Id C
7 xpccat.j J = Id D
8 1 4 5 xpcbas X × Y = Base T
9 8 a1i φ X × Y = Base T
10 eqidd φ Hom T = Hom T
11 eqidd φ comp T = comp T
12 1 ovexi T V
13 12 a1i φ T V
14 biid s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v
15 eqid Hom C = Hom C
16 2 adantr φ t X × Y C Cat
17 xp1st t X × Y 1 st t X
18 17 adantl φ t X × Y 1 st t X
19 4 15 6 16 18 catidcl φ t X × Y I 1 st t 1 st t Hom C 1 st t
20 eqid Hom D = Hom D
21 3 adantr φ t X × Y D Cat
22 xp2nd t X × Y 2 nd t Y
23 22 adantl φ t X × Y 2 nd t Y
24 5 20 7 21 23 catidcl φ t X × Y J 2 nd t 2 nd t Hom D 2 nd t
25 19 24 opelxpd φ t X × Y I 1 st t J 2 nd t 1 st t Hom C 1 st t × 2 nd t Hom D 2 nd t
26 eqid Hom T = Hom T
27 simpr φ t X × Y t X × Y
28 1 8 15 20 26 27 27 xpchom φ t X × Y t Hom T t = 1 st t Hom C 1 st t × 2 nd t Hom D 2 nd t
29 25 28 eleqtrrd φ t X × Y I 1 st t J 2 nd t t Hom T t
30 fvex I 1 st t V
31 fvex J 2 nd t V
32 30 31 op1st 1 st I 1 st t J 2 nd t = I 1 st t
33 32 oveq1i 1 st I 1 st t J 2 nd t 1 st s 1 st t comp C 1 st t 1 st f = I 1 st t 1 st s 1 st t comp C 1 st t 1 st f
34 2 adantr φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v C Cat
35 simpr1l φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v s X × Y
36 xp1st s X × Y 1 st s X
37 35 36 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st s X
38 eqid comp C = comp C
39 simpr1r φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v t X × Y
40 39 17 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st t X
41 simpr31 φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v f s Hom T t
42 1 8 15 20 26 35 39 xpchom φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v s Hom T t = 1 st s Hom C 1 st t × 2 nd s Hom D 2 nd t
43 41 42 eleqtrd φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v f 1 st s Hom C 1 st t × 2 nd s Hom D 2 nd t
44 xp1st f 1 st s Hom C 1 st t × 2 nd s Hom D 2 nd t 1 st f 1 st s Hom C 1 st t
45 43 44 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st f 1 st s Hom C 1 st t
46 4 15 6 34 37 38 40 45 catlid φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v I 1 st t 1 st s 1 st t comp C 1 st t 1 st f = 1 st f
47 33 46 eqtrid φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st I 1 st t J 2 nd t 1 st s 1 st t comp C 1 st t 1 st f = 1 st f
48 30 31 op2nd 2 nd I 1 st t J 2 nd t = J 2 nd t
49 48 oveq1i 2 nd I 1 st t J 2 nd t 2 nd s 2 nd t comp D 2 nd t 2 nd f = J 2 nd t 2 nd s 2 nd t comp D 2 nd t 2 nd f
50 3 adantr φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v D Cat
51 xp2nd s X × Y 2 nd s Y
52 35 51 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd s Y
53 eqid comp D = comp D
54 39 22 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd t Y
55 xp2nd f 1 st s Hom C 1 st t × 2 nd s Hom D 2 nd t 2 nd f 2 nd s Hom D 2 nd t
56 43 55 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd f 2 nd s Hom D 2 nd t
57 5 20 7 50 52 53 54 56 catlid φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v J 2 nd t 2 nd s 2 nd t comp D 2 nd t 2 nd f = 2 nd f
58 49 57 eqtrid φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd I 1 st t J 2 nd t 2 nd s 2 nd t comp D 2 nd t 2 nd f = 2 nd f
59 47 58 opeq12d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st I 1 st t J 2 nd t 1 st s 1 st t comp C 1 st t 1 st f 2 nd I 1 st t J 2 nd t 2 nd s 2 nd t comp D 2 nd t 2 nd f = 1 st f 2 nd f
60 eqid comp T = comp T
61 39 29 syldan φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v I 1 st t J 2 nd t t Hom T t
62 1 8 26 38 53 60 35 39 39 41 61 xpcco φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v I 1 st t J 2 nd t s t comp T t f = 1 st I 1 st t J 2 nd t 1 st s 1 st t comp C 1 st t 1 st f 2 nd I 1 st t J 2 nd t 2 nd s 2 nd t comp D 2 nd t 2 nd f
63 1st2nd2 f 1 st s Hom C 1 st t × 2 nd s Hom D 2 nd t f = 1 st f 2 nd f
64 43 63 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v f = 1 st f 2 nd f
65 59 62 64 3eqtr4d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v I 1 st t J 2 nd t s t comp T t f = f
66 32 oveq2i 1 st g 1 st t 1 st t comp C 1 st u 1 st I 1 st t J 2 nd t = 1 st g 1 st t 1 st t comp C 1 st u I 1 st t
67 simpr2l φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v u X × Y
68 xp1st u X × Y 1 st u X
69 67 68 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st u X
70 simpr32 φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v g t Hom T u
71 1 8 15 20 26 39 67 xpchom φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v t Hom T u = 1 st t Hom C 1 st u × 2 nd t Hom D 2 nd u
72 70 71 eleqtrd φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v g 1 st t Hom C 1 st u × 2 nd t Hom D 2 nd u
73 xp1st g 1 st t Hom C 1 st u × 2 nd t Hom D 2 nd u 1 st g 1 st t Hom C 1 st u
74 72 73 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st g 1 st t Hom C 1 st u
75 4 15 6 34 40 38 69 74 catrid φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st g 1 st t 1 st t comp C 1 st u I 1 st t = 1 st g
76 66 75 eqtrid φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st g 1 st t 1 st t comp C 1 st u 1 st I 1 st t J 2 nd t = 1 st g
77 48 oveq2i 2 nd g 2 nd t 2 nd t comp D 2 nd u 2 nd I 1 st t J 2 nd t = 2 nd g 2 nd t 2 nd t comp D 2 nd u J 2 nd t
78 xp2nd u X × Y 2 nd u Y
79 67 78 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd u Y
80 xp2nd g 1 st t Hom C 1 st u × 2 nd t Hom D 2 nd u 2 nd g 2 nd t Hom D 2 nd u
81 72 80 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd g 2 nd t Hom D 2 nd u
82 5 20 7 50 54 53 79 81 catrid φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd g 2 nd t 2 nd t comp D 2 nd u J 2 nd t = 2 nd g
83 77 82 eqtrid φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd g 2 nd t 2 nd t comp D 2 nd u 2 nd I 1 st t J 2 nd t = 2 nd g
84 76 83 opeq12d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st g 1 st t 1 st t comp C 1 st u 1 st I 1 st t J 2 nd t 2 nd g 2 nd t 2 nd t comp D 2 nd u 2 nd I 1 st t J 2 nd t = 1 st g 2 nd g
85 1 8 26 38 53 60 39 39 67 61 70 xpcco φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v g t t comp T u I 1 st t J 2 nd t = 1 st g 1 st t 1 st t comp C 1 st u 1 st I 1 st t J 2 nd t 2 nd g 2 nd t 2 nd t comp D 2 nd u 2 nd I 1 st t J 2 nd t
86 1st2nd2 g 1 st t Hom C 1 st u × 2 nd t Hom D 2 nd u g = 1 st g 2 nd g
87 72 86 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v g = 1 st g 2 nd g
88 84 85 87 3eqtr4d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v g t t comp T u I 1 st t J 2 nd t = g
89 4 15 38 34 37 40 69 45 74 catcocl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st g 1 st s 1 st t comp C 1 st u 1 st f 1 st s Hom C 1 st u
90 5 20 53 50 52 54 79 56 81 catcocl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd g 2 nd s 2 nd t comp D 2 nd u 2 nd f 2 nd s Hom D 2 nd u
91 89 90 opelxpd φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st g 1 st s 1 st t comp C 1 st u 1 st f 2 nd g 2 nd s 2 nd t comp D 2 nd u 2 nd f 1 st s Hom C 1 st u × 2 nd s Hom D 2 nd u
92 1 8 26 38 53 60 35 39 67 41 70 xpcco φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v g s t comp T u f = 1 st g 1 st s 1 st t comp C 1 st u 1 st f 2 nd g 2 nd s 2 nd t comp D 2 nd u 2 nd f
93 1 8 15 20 26 35 67 xpchom φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v s Hom T u = 1 st s Hom C 1 st u × 2 nd s Hom D 2 nd u
94 91 92 93 3eltr4d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v g s t comp T u f s Hom T u
95 simpr2r φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v v X × Y
96 xp1st v X × Y 1 st v X
97 95 96 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st v X
98 simpr33 φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v h u Hom T v
99 1 8 15 20 26 67 95 xpchom φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v u Hom T v = 1 st u Hom C 1 st v × 2 nd u Hom D 2 nd v
100 98 99 eleqtrd φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v h 1 st u Hom C 1 st v × 2 nd u Hom D 2 nd v
101 xp1st h 1 st u Hom C 1 st v × 2 nd u Hom D 2 nd v 1 st h 1 st u Hom C 1 st v
102 100 101 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st h 1 st u Hom C 1 st v
103 4 15 38 34 37 40 69 45 74 97 102 catass φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st h 1 st t 1 st u comp C 1 st v 1 st g 1 st s 1 st t comp C 1 st v 1 st f = 1 st h 1 st s 1 st u comp C 1 st v 1 st g 1 st s 1 st t comp C 1 st u 1 st f
104 1 8 26 38 53 60 39 67 95 70 98 xpcco φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v h t u comp T v g = 1 st h 1 st t 1 st u comp C 1 st v 1 st g 2 nd h 2 nd t 2 nd u comp D 2 nd v 2 nd g
105 104 fveq2d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st h t u comp T v g = 1 st 1 st h 1 st t 1 st u comp C 1 st v 1 st g 2 nd h 2 nd t 2 nd u comp D 2 nd v 2 nd g
106 ovex 1 st h 1 st t 1 st u comp C 1 st v 1 st g V
107 ovex 2 nd h 2 nd t 2 nd u comp D 2 nd v 2 nd g V
108 106 107 op1st 1 st 1 st h 1 st t 1 st u comp C 1 st v 1 st g 2 nd h 2 nd t 2 nd u comp D 2 nd v 2 nd g = 1 st h 1 st t 1 st u comp C 1 st v 1 st g
109 105 108 eqtrdi φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st h t u comp T v g = 1 st h 1 st t 1 st u comp C 1 st v 1 st g
110 109 oveq1d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st h t u comp T v g 1 st s 1 st t comp C 1 st v 1 st f = 1 st h 1 st t 1 st u comp C 1 st v 1 st g 1 st s 1 st t comp C 1 st v 1 st f
111 92 fveq2d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st g s t comp T u f = 1 st 1 st g 1 st s 1 st t comp C 1 st u 1 st f 2 nd g 2 nd s 2 nd t comp D 2 nd u 2 nd f
112 ovex 1 st g 1 st s 1 st t comp C 1 st u 1 st f V
113 ovex 2 nd g 2 nd s 2 nd t comp D 2 nd u 2 nd f V
114 112 113 op1st 1 st 1 st g 1 st s 1 st t comp C 1 st u 1 st f 2 nd g 2 nd s 2 nd t comp D 2 nd u 2 nd f = 1 st g 1 st s 1 st t comp C 1 st u 1 st f
115 111 114 eqtrdi φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st g s t comp T u f = 1 st g 1 st s 1 st t comp C 1 st u 1 st f
116 115 oveq2d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st h 1 st s 1 st u comp C 1 st v 1 st g s t comp T u f = 1 st h 1 st s 1 st u comp C 1 st v 1 st g 1 st s 1 st t comp C 1 st u 1 st f
117 103 110 116 3eqtr4d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st h t u comp T v g 1 st s 1 st t comp C 1 st v 1 st f = 1 st h 1 st s 1 st u comp C 1 st v 1 st g s t comp T u f
118 xp2nd v X × Y 2 nd v Y
119 95 118 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd v Y
120 xp2nd h 1 st u Hom C 1 st v × 2 nd u Hom D 2 nd v 2 nd h 2 nd u Hom D 2 nd v
121 100 120 syl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd h 2 nd u Hom D 2 nd v
122 5 20 53 50 52 54 79 56 81 119 121 catass φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd h 2 nd t 2 nd u comp D 2 nd v 2 nd g 2 nd s 2 nd t comp D 2 nd v 2 nd f = 2 nd h 2 nd s 2 nd u comp D 2 nd v 2 nd g 2 nd s 2 nd t comp D 2 nd u 2 nd f
123 104 fveq2d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd h t u comp T v g = 2 nd 1 st h 1 st t 1 st u comp C 1 st v 1 st g 2 nd h 2 nd t 2 nd u comp D 2 nd v 2 nd g
124 106 107 op2nd 2 nd 1 st h 1 st t 1 st u comp C 1 st v 1 st g 2 nd h 2 nd t 2 nd u comp D 2 nd v 2 nd g = 2 nd h 2 nd t 2 nd u comp D 2 nd v 2 nd g
125 123 124 eqtrdi φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd h t u comp T v g = 2 nd h 2 nd t 2 nd u comp D 2 nd v 2 nd g
126 125 oveq1d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd h t u comp T v g 2 nd s 2 nd t comp D 2 nd v 2 nd f = 2 nd h 2 nd t 2 nd u comp D 2 nd v 2 nd g 2 nd s 2 nd t comp D 2 nd v 2 nd f
127 92 fveq2d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd g s t comp T u f = 2 nd 1 st g 1 st s 1 st t comp C 1 st u 1 st f 2 nd g 2 nd s 2 nd t comp D 2 nd u 2 nd f
128 112 113 op2nd 2 nd 1 st g 1 st s 1 st t comp C 1 st u 1 st f 2 nd g 2 nd s 2 nd t comp D 2 nd u 2 nd f = 2 nd g 2 nd s 2 nd t comp D 2 nd u 2 nd f
129 127 128 eqtrdi φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd g s t comp T u f = 2 nd g 2 nd s 2 nd t comp D 2 nd u 2 nd f
130 129 oveq2d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd h 2 nd s 2 nd u comp D 2 nd v 2 nd g s t comp T u f = 2 nd h 2 nd s 2 nd u comp D 2 nd v 2 nd g 2 nd s 2 nd t comp D 2 nd u 2 nd f
131 122 126 130 3eqtr4d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd h t u comp T v g 2 nd s 2 nd t comp D 2 nd v 2 nd f = 2 nd h 2 nd s 2 nd u comp D 2 nd v 2 nd g s t comp T u f
132 117 131 opeq12d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st h t u comp T v g 1 st s 1 st t comp C 1 st v 1 st f 2 nd h t u comp T v g 2 nd s 2 nd t comp D 2 nd v 2 nd f = 1 st h 1 st s 1 st u comp C 1 st v 1 st g s t comp T u f 2 nd h 2 nd s 2 nd u comp D 2 nd v 2 nd g s t comp T u f
133 4 15 38 34 40 69 97 74 102 catcocl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st h 1 st t 1 st u comp C 1 st v 1 st g 1 st t Hom C 1 st v
134 5 20 53 50 54 79 119 81 121 catcocl φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 2 nd h 2 nd t 2 nd u comp D 2 nd v 2 nd g 2 nd t Hom D 2 nd v
135 133 134 opelxpd φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v 1 st h 1 st t 1 st u comp C 1 st v 1 st g 2 nd h 2 nd t 2 nd u comp D 2 nd v 2 nd g 1 st t Hom C 1 st v × 2 nd t Hom D 2 nd v
136 1 8 15 20 26 39 95 xpchom φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v t Hom T v = 1 st t Hom C 1 st v × 2 nd t Hom D 2 nd v
137 135 104 136 3eltr4d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v h t u comp T v g t Hom T v
138 1 8 26 38 53 60 35 39 95 41 137 xpcco φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v h t u comp T v g s t comp T v f = 1 st h t u comp T v g 1 st s 1 st t comp C 1 st v 1 st f 2 nd h t u comp T v g 2 nd s 2 nd t comp D 2 nd v 2 nd f
139 1 8 26 38 53 60 35 67 95 94 98 xpcco φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v h s u comp T v g s t comp T u f = 1 st h 1 st s 1 st u comp C 1 st v 1 st g s t comp T u f 2 nd h 2 nd s 2 nd u comp D 2 nd v 2 nd g s t comp T u f
140 132 138 139 3eqtr4d φ s X × Y t X × Y u X × Y v X × Y f s Hom T t g t Hom T u h u Hom T v h t u comp T v g s t comp T v f = h s u comp T v g s t comp T u f
141 9 10 11 13 14 29 65 88 94 140 iscatd2 φ T Cat Id T = t X × Y I 1 st t J 2 nd t
142 vex x V
143 vex y V
144 142 143 op1std t = x y 1 st t = x
145 144 fveq2d t = x y I 1 st t = I x
146 142 143 op2ndd t = x y 2 nd t = y
147 146 fveq2d t = x y J 2 nd t = J y
148 145 147 opeq12d t = x y I 1 st t J 2 nd t = I x J y
149 148 mpompt t X × Y I 1 st t J 2 nd t = x X , y Y I x J y
150 149 eqeq2i Id T = t X × Y I 1 st t J 2 nd t Id T = x X , y Y I x J y
151 150 anbi2i T Cat Id T = t X × Y I 1 st t J 2 nd t T Cat Id T = x X , y Y I x J y
152 141 151 sylib φ T Cat Id T = x X , y Y I x J y