Step |
Hyp |
Ref |
Expression |
1 |
|
xpccat.t |
|
2 |
|
xpccat.c |
|
3 |
|
xpccat.d |
|
4 |
|
xpccat.x |
|
5 |
|
xpccat.y |
|
6 |
|
xpccat.i |
|
7 |
|
xpccat.j |
|
8 |
1 4 5
|
xpcbas |
|
9 |
8
|
a1i |
|
10 |
|
eqidd |
|
11 |
|
eqidd |
|
12 |
1
|
ovexi |
|
13 |
12
|
a1i |
|
14 |
|
biid |
|
15 |
|
eqid |
|
16 |
2
|
adantr |
|
17 |
|
xp1st |
|
18 |
17
|
adantl |
|
19 |
4 15 6 16 18
|
catidcl |
|
20 |
|
eqid |
|
21 |
3
|
adantr |
|
22 |
|
xp2nd |
|
23 |
22
|
adantl |
|
24 |
5 20 7 21 23
|
catidcl |
|
25 |
19 24
|
opelxpd |
|
26 |
|
eqid |
|
27 |
|
simpr |
|
28 |
1 8 15 20 26 27 27
|
xpchom |
|
29 |
25 28
|
eleqtrrd |
|
30 |
|
fvex |
|
31 |
|
fvex |
|
32 |
30 31
|
op1st |
|
33 |
32
|
oveq1i |
|
34 |
2
|
adantr |
|
35 |
|
simpr1l |
|
36 |
|
xp1st |
|
37 |
35 36
|
syl |
|
38 |
|
eqid |
|
39 |
|
simpr1r |
|
40 |
39 17
|
syl |
|
41 |
|
simpr31 |
|
42 |
1 8 15 20 26 35 39
|
xpchom |
|
43 |
41 42
|
eleqtrd |
|
44 |
|
xp1st |
|
45 |
43 44
|
syl |
|
46 |
4 15 6 34 37 38 40 45
|
catlid |
|
47 |
33 46
|
eqtrid |
|
48 |
30 31
|
op2nd |
|
49 |
48
|
oveq1i |
|
50 |
3
|
adantr |
|
51 |
|
xp2nd |
|
52 |
35 51
|
syl |
|
53 |
|
eqid |
|
54 |
39 22
|
syl |
|
55 |
|
xp2nd |
|
56 |
43 55
|
syl |
|
57 |
5 20 7 50 52 53 54 56
|
catlid |
|
58 |
49 57
|
eqtrid |
|
59 |
47 58
|
opeq12d |
|
60 |
|
eqid |
|
61 |
39 29
|
syldan |
|
62 |
1 8 26 38 53 60 35 39 39 41 61
|
xpcco |
|
63 |
|
1st2nd2 |
|
64 |
43 63
|
syl |
|
65 |
59 62 64
|
3eqtr4d |
|
66 |
32
|
oveq2i |
|
67 |
|
simpr2l |
|
68 |
|
xp1st |
|
69 |
67 68
|
syl |
|
70 |
|
simpr32 |
|
71 |
1 8 15 20 26 39 67
|
xpchom |
|
72 |
70 71
|
eleqtrd |
|
73 |
|
xp1st |
|
74 |
72 73
|
syl |
|
75 |
4 15 6 34 40 38 69 74
|
catrid |
|
76 |
66 75
|
eqtrid |
|
77 |
48
|
oveq2i |
|
78 |
|
xp2nd |
|
79 |
67 78
|
syl |
|
80 |
|
xp2nd |
|
81 |
72 80
|
syl |
|
82 |
5 20 7 50 54 53 79 81
|
catrid |
|
83 |
77 82
|
eqtrid |
|
84 |
76 83
|
opeq12d |
|
85 |
1 8 26 38 53 60 39 39 67 61 70
|
xpcco |
|
86 |
|
1st2nd2 |
|
87 |
72 86
|
syl |
|
88 |
84 85 87
|
3eqtr4d |
|
89 |
4 15 38 34 37 40 69 45 74
|
catcocl |
|
90 |
5 20 53 50 52 54 79 56 81
|
catcocl |
|
91 |
89 90
|
opelxpd |
|
92 |
1 8 26 38 53 60 35 39 67 41 70
|
xpcco |
|
93 |
1 8 15 20 26 35 67
|
xpchom |
|
94 |
91 92 93
|
3eltr4d |
|
95 |
|
simpr2r |
|
96 |
|
xp1st |
|
97 |
95 96
|
syl |
|
98 |
|
simpr33 |
|
99 |
1 8 15 20 26 67 95
|
xpchom |
|
100 |
98 99
|
eleqtrd |
|
101 |
|
xp1st |
|
102 |
100 101
|
syl |
|
103 |
4 15 38 34 37 40 69 45 74 97 102
|
catass |
|
104 |
1 8 26 38 53 60 39 67 95 70 98
|
xpcco |
|
105 |
104
|
fveq2d |
|
106 |
|
ovex |
|
107 |
|
ovex |
|
108 |
106 107
|
op1st |
|
109 |
105 108
|
eqtrdi |
|
110 |
109
|
oveq1d |
|
111 |
92
|
fveq2d |
|
112 |
|
ovex |
|
113 |
|
ovex |
|
114 |
112 113
|
op1st |
|
115 |
111 114
|
eqtrdi |
|
116 |
115
|
oveq2d |
|
117 |
103 110 116
|
3eqtr4d |
|
118 |
|
xp2nd |
|
119 |
95 118
|
syl |
|
120 |
|
xp2nd |
|
121 |
100 120
|
syl |
|
122 |
5 20 53 50 52 54 79 56 81 119 121
|
catass |
|
123 |
104
|
fveq2d |
|
124 |
106 107
|
op2nd |
|
125 |
123 124
|
eqtrdi |
|
126 |
125
|
oveq1d |
|
127 |
92
|
fveq2d |
|
128 |
112 113
|
op2nd |
|
129 |
127 128
|
eqtrdi |
|
130 |
129
|
oveq2d |
|
131 |
122 126 130
|
3eqtr4d |
|
132 |
117 131
|
opeq12d |
|
133 |
4 15 38 34 40 69 97 74 102
|
catcocl |
|
134 |
5 20 53 50 54 79 119 81 121
|
catcocl |
|
135 |
133 134
|
opelxpd |
|
136 |
1 8 15 20 26 39 95
|
xpchom |
|
137 |
135 104 136
|
3eltr4d |
|
138 |
1 8 26 38 53 60 35 39 95 41 137
|
xpcco |
|
139 |
1 8 26 38 53 60 35 67 95 94 98
|
xpcco |
|
140 |
132 138 139
|
3eqtr4d |
|
141 |
9 10 11 13 14 29 65 88 94 140
|
iscatd2 |
|
142 |
|
vex |
|
143 |
|
vex |
|
144 |
142 143
|
op1std |
|
145 |
144
|
fveq2d |
|
146 |
142 143
|
op2ndd |
|
147 |
146
|
fveq2d |
|
148 |
145 147
|
opeq12d |
|
149 |
148
|
mpompt |
|
150 |
149
|
eqeq2i |
|
151 |
150
|
anbi2i |
|
152 |
141 151
|
sylib |
|