| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpccat.t |
|- T = ( C Xc. D ) |
| 2 |
|
xpccat.c |
|- ( ph -> C e. Cat ) |
| 3 |
|
xpccat.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
xpccat.x |
|- X = ( Base ` C ) |
| 5 |
|
xpccat.y |
|- Y = ( Base ` D ) |
| 6 |
|
xpccat.i |
|- I = ( Id ` C ) |
| 7 |
|
xpccat.j |
|- J = ( Id ` D ) |
| 8 |
1 4 5
|
xpcbas |
|- ( X X. Y ) = ( Base ` T ) |
| 9 |
8
|
a1i |
|- ( ph -> ( X X. Y ) = ( Base ` T ) ) |
| 10 |
|
eqidd |
|- ( ph -> ( Hom ` T ) = ( Hom ` T ) ) |
| 11 |
|
eqidd |
|- ( ph -> ( comp ` T ) = ( comp ` T ) ) |
| 12 |
1
|
ovexi |
|- T e. _V |
| 13 |
12
|
a1i |
|- ( ph -> T e. _V ) |
| 14 |
|
biid |
|- ( ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) <-> ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) |
| 15 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 16 |
2
|
adantr |
|- ( ( ph /\ t e. ( X X. Y ) ) -> C e. Cat ) |
| 17 |
|
xp1st |
|- ( t e. ( X X. Y ) -> ( 1st ` t ) e. X ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ t e. ( X X. Y ) ) -> ( 1st ` t ) e. X ) |
| 19 |
4 15 6 16 18
|
catidcl |
|- ( ( ph /\ t e. ( X X. Y ) ) -> ( I ` ( 1st ` t ) ) e. ( ( 1st ` t ) ( Hom ` C ) ( 1st ` t ) ) ) |
| 20 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 21 |
3
|
adantr |
|- ( ( ph /\ t e. ( X X. Y ) ) -> D e. Cat ) |
| 22 |
|
xp2nd |
|- ( t e. ( X X. Y ) -> ( 2nd ` t ) e. Y ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ t e. ( X X. Y ) ) -> ( 2nd ` t ) e. Y ) |
| 24 |
5 20 7 21 23
|
catidcl |
|- ( ( ph /\ t e. ( X X. Y ) ) -> ( J ` ( 2nd ` t ) ) e. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` t ) ) ) |
| 25 |
19 24
|
opelxpd |
|- ( ( ph /\ t e. ( X X. Y ) ) -> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` t ) ) ) ) |
| 26 |
|
eqid |
|- ( Hom ` T ) = ( Hom ` T ) |
| 27 |
|
simpr |
|- ( ( ph /\ t e. ( X X. Y ) ) -> t e. ( X X. Y ) ) |
| 28 |
1 8 15 20 26 27 27
|
xpchom |
|- ( ( ph /\ t e. ( X X. Y ) ) -> ( t ( Hom ` T ) t ) = ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` t ) ) ) ) |
| 29 |
25 28
|
eleqtrrd |
|- ( ( ph /\ t e. ( X X. Y ) ) -> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. e. ( t ( Hom ` T ) t ) ) |
| 30 |
|
fvex |
|- ( I ` ( 1st ` t ) ) e. _V |
| 31 |
|
fvex |
|- ( J ` ( 2nd ` t ) ) e. _V |
| 32 |
30 31
|
op1st |
|- ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = ( I ` ( 1st ` t ) ) |
| 33 |
32
|
oveq1i |
|- ( ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) = ( ( I ` ( 1st ` t ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) |
| 34 |
2
|
adantr |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> C e. Cat ) |
| 35 |
|
simpr1l |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> s e. ( X X. Y ) ) |
| 36 |
|
xp1st |
|- ( s e. ( X X. Y ) -> ( 1st ` s ) e. X ) |
| 37 |
35 36
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` s ) e. X ) |
| 38 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 39 |
|
simpr1r |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> t e. ( X X. Y ) ) |
| 40 |
39 17
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` t ) e. X ) |
| 41 |
|
simpr31 |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> f e. ( s ( Hom ` T ) t ) ) |
| 42 |
1 8 15 20 26 35 39
|
xpchom |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( s ( Hom ` T ) t ) = ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) ) |
| 43 |
41 42
|
eleqtrd |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> f e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) ) |
| 44 |
|
xp1st |
|- ( f e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) -> ( 1st ` f ) e. ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) ) |
| 45 |
43 44
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` f ) e. ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) ) |
| 46 |
4 15 6 34 37 38 40 45
|
catlid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( I ` ( 1st ` t ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) = ( 1st ` f ) ) |
| 47 |
33 46
|
eqtrid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) = ( 1st ` f ) ) |
| 48 |
30 31
|
op2nd |
|- ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = ( J ` ( 2nd ` t ) ) |
| 49 |
48
|
oveq1i |
|- ( ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) = ( ( J ` ( 2nd ` t ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) |
| 50 |
3
|
adantr |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> D e. Cat ) |
| 51 |
|
xp2nd |
|- ( s e. ( X X. Y ) -> ( 2nd ` s ) e. Y ) |
| 52 |
35 51
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` s ) e. Y ) |
| 53 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 54 |
39 22
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` t ) e. Y ) |
| 55 |
|
xp2nd |
|- ( f e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) -> ( 2nd ` f ) e. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) |
| 56 |
43 55
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` f ) e. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) |
| 57 |
5 20 7 50 52 53 54 56
|
catlid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( J ` ( 2nd ` t ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) = ( 2nd ` f ) ) |
| 58 |
49 57
|
eqtrid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) = ( 2nd ` f ) ) |
| 59 |
47 58
|
opeq12d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) , ( ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) >. = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 60 |
|
eqid |
|- ( comp ` T ) = ( comp ` T ) |
| 61 |
39 29
|
syldan |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. e. ( t ( Hom ` T ) t ) ) |
| 62 |
1 8 26 38 53 60 35 39 39 41 61
|
xpcco |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ( <. s , t >. ( comp ` T ) t ) f ) = <. ( ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) , ( ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) >. ) |
| 63 |
|
1st2nd2 |
|- ( f e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 64 |
43 63
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
| 65 |
59 62 64
|
3eqtr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ( <. s , t >. ( comp ` T ) t ) f ) = f ) |
| 66 |
32
|
oveq2i |
|- ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) = ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( I ` ( 1st ` t ) ) ) |
| 67 |
|
simpr2l |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> u e. ( X X. Y ) ) |
| 68 |
|
xp1st |
|- ( u e. ( X X. Y ) -> ( 1st ` u ) e. X ) |
| 69 |
67 68
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` u ) e. X ) |
| 70 |
|
simpr32 |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> g e. ( t ( Hom ` T ) u ) ) |
| 71 |
1 8 15 20 26 39 67
|
xpchom |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( t ( Hom ` T ) u ) = ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) ) |
| 72 |
70 71
|
eleqtrd |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> g e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) ) |
| 73 |
|
xp1st |
|- ( g e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) -> ( 1st ` g ) e. ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) ) |
| 74 |
72 73
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` g ) e. ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) ) |
| 75 |
4 15 6 34 40 38 69 74
|
catrid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( I ` ( 1st ` t ) ) ) = ( 1st ` g ) ) |
| 76 |
66 75
|
eqtrid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) = ( 1st ` g ) ) |
| 77 |
48
|
oveq2i |
|- ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) = ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( J ` ( 2nd ` t ) ) ) |
| 78 |
|
xp2nd |
|- ( u e. ( X X. Y ) -> ( 2nd ` u ) e. Y ) |
| 79 |
67 78
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` u ) e. Y ) |
| 80 |
|
xp2nd |
|- ( g e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) -> ( 2nd ` g ) e. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) |
| 81 |
72 80
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` g ) e. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) |
| 82 |
5 20 7 50 54 53 79 81
|
catrid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( J ` ( 2nd ` t ) ) ) = ( 2nd ` g ) ) |
| 83 |
77 82
|
eqtrid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) = ( 2nd ` g ) ) |
| 84 |
76 83
|
opeq12d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) >. = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 85 |
1 8 26 38 53 60 39 39 67 61 70
|
xpcco |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( g ( <. t , t >. ( comp ` T ) u ) <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = <. ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) >. ) |
| 86 |
|
1st2nd2 |
|- ( g e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 87 |
72 86
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
| 88 |
84 85 87
|
3eqtr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( g ( <. t , t >. ( comp ` T ) u ) <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = g ) |
| 89 |
4 15 38 34 37 40 69 45 74
|
catcocl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) e. ( ( 1st ` s ) ( Hom ` C ) ( 1st ` u ) ) ) |
| 90 |
5 20 53 50 52 54 79 56 81
|
catcocl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) e. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` u ) ) ) |
| 91 |
89 90
|
opelxpd |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` u ) ) ) ) |
| 92 |
1 8 26 38 53 60 35 39 67 41 70
|
xpcco |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( g ( <. s , t >. ( comp ` T ) u ) f ) = <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) |
| 93 |
1 8 15 20 26 35 67
|
xpchom |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( s ( Hom ` T ) u ) = ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` u ) ) ) ) |
| 94 |
91 92 93
|
3eltr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( g ( <. s , t >. ( comp ` T ) u ) f ) e. ( s ( Hom ` T ) u ) ) |
| 95 |
|
simpr2r |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> v e. ( X X. Y ) ) |
| 96 |
|
xp1st |
|- ( v e. ( X X. Y ) -> ( 1st ` v ) e. X ) |
| 97 |
95 96
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` v ) e. X ) |
| 98 |
|
simpr33 |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> h e. ( u ( Hom ` T ) v ) ) |
| 99 |
1 8 15 20 26 67 95
|
xpchom |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( u ( Hom ` T ) v ) = ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
| 100 |
98 99
|
eleqtrd |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> h e. ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
| 101 |
|
xp1st |
|- ( h e. ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) -> ( 1st ` h ) e. ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) ) |
| 102 |
100 101
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` h ) e. ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) ) |
| 103 |
4 15 38 34 37 40 69 45 74 97 102
|
catass |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) = ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) ) ) |
| 104 |
1 8 26 38 53 60 39 67 95 70 98
|
xpcco |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( h ( <. t , u >. ( comp ` T ) v ) g ) = <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) |
| 105 |
104
|
fveq2d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) = ( 1st ` <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) ) |
| 106 |
|
ovex |
|- ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) e. _V |
| 107 |
|
ovex |
|- ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) e. _V |
| 108 |
106 107
|
op1st |
|- ( 1st ` <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) = ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) |
| 109 |
105 108
|
eqtrdi |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) = ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) ) |
| 110 |
109
|
oveq1d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) = ( ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) ) |
| 111 |
92
|
fveq2d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = ( 1st ` <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) ) |
| 112 |
|
ovex |
|- ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) e. _V |
| 113 |
|
ovex |
|- ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) e. _V |
| 114 |
112 113
|
op1st |
|- ( 1st ` <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) = ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) |
| 115 |
111 114
|
eqtrdi |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) ) |
| 116 |
115
|
oveq2d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) = ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) ) ) |
| 117 |
103 110 116
|
3eqtr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) = ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) ) |
| 118 |
|
xp2nd |
|- ( v e. ( X X. Y ) -> ( 2nd ` v ) e. Y ) |
| 119 |
95 118
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` v ) e. Y ) |
| 120 |
|
xp2nd |
|- ( h e. ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) -> ( 2nd ` h ) e. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) |
| 121 |
100 120
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` h ) e. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) |
| 122 |
5 20 53 50 52 54 79 56 81 119 121
|
catass |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) = ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) ) ) |
| 123 |
104
|
fveq2d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) = ( 2nd ` <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) ) |
| 124 |
106 107
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) = ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) |
| 125 |
123 124
|
eqtrdi |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) = ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) ) |
| 126 |
125
|
oveq1d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) = ( ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) ) |
| 127 |
92
|
fveq2d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = ( 2nd ` <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) ) |
| 128 |
112 113
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) = ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) |
| 129 |
127 128
|
eqtrdi |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) ) |
| 130 |
129
|
oveq2d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) = ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) ) ) |
| 131 |
122 126 130
|
3eqtr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) = ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) ) |
| 132 |
117 131
|
opeq12d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) , ( ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) >. = <. ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) >. ) |
| 133 |
4 15 38 34 40 69 97 74 102
|
catcocl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) e. ( ( 1st ` t ) ( Hom ` C ) ( 1st ` v ) ) ) |
| 134 |
5 20 53 50 54 79 119 81 121
|
catcocl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) e. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` v ) ) ) |
| 135 |
133 134
|
opelxpd |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
| 136 |
1 8 15 20 26 39 95
|
xpchom |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( t ( Hom ` T ) v ) = ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
| 137 |
135 104 136
|
3eltr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( h ( <. t , u >. ( comp ` T ) v ) g ) e. ( t ( Hom ` T ) v ) ) |
| 138 |
1 8 26 38 53 60 35 39 95 41 137
|
xpcco |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( h ( <. t , u >. ( comp ` T ) v ) g ) ( <. s , t >. ( comp ` T ) v ) f ) = <. ( ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) , ( ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) >. ) |
| 139 |
1 8 26 38 53 60 35 67 95 94 98
|
xpcco |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( h ( <. s , u >. ( comp ` T ) v ) ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = <. ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) >. ) |
| 140 |
132 138 139
|
3eqtr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( h ( <. t , u >. ( comp ` T ) v ) g ) ( <. s , t >. ( comp ` T ) v ) f ) = ( h ( <. s , u >. ( comp ` T ) v ) ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) |
| 141 |
9 10 11 13 14 29 65 88 94 140
|
iscatd2 |
|- ( ph -> ( T e. Cat /\ ( Id ` T ) = ( t e. ( X X. Y ) |-> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) ) |
| 142 |
|
vex |
|- x e. _V |
| 143 |
|
vex |
|- y e. _V |
| 144 |
142 143
|
op1std |
|- ( t = <. x , y >. -> ( 1st ` t ) = x ) |
| 145 |
144
|
fveq2d |
|- ( t = <. x , y >. -> ( I ` ( 1st ` t ) ) = ( I ` x ) ) |
| 146 |
142 143
|
op2ndd |
|- ( t = <. x , y >. -> ( 2nd ` t ) = y ) |
| 147 |
146
|
fveq2d |
|- ( t = <. x , y >. -> ( J ` ( 2nd ` t ) ) = ( J ` y ) ) |
| 148 |
145 147
|
opeq12d |
|- ( t = <. x , y >. -> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. = <. ( I ` x ) , ( J ` y ) >. ) |
| 149 |
148
|
mpompt |
|- ( t e. ( X X. Y ) |-> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) |
| 150 |
149
|
eqeq2i |
|- ( ( Id ` T ) = ( t e. ( X X. Y ) |-> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) <-> ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) |
| 151 |
150
|
anbi2i |
|- ( ( T e. Cat /\ ( Id ` T ) = ( t e. ( X X. Y ) |-> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) <-> ( T e. Cat /\ ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) ) |
| 152 |
141 151
|
sylib |
|- ( ph -> ( T e. Cat /\ ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) ) |