Step |
Hyp |
Ref |
Expression |
1 |
|
xpccat.t |
|- T = ( C Xc. D ) |
2 |
|
xpccat.c |
|- ( ph -> C e. Cat ) |
3 |
|
xpccat.d |
|- ( ph -> D e. Cat ) |
4 |
|
xpccat.x |
|- X = ( Base ` C ) |
5 |
|
xpccat.y |
|- Y = ( Base ` D ) |
6 |
|
xpccat.i |
|- I = ( Id ` C ) |
7 |
|
xpccat.j |
|- J = ( Id ` D ) |
8 |
1 4 5
|
xpcbas |
|- ( X X. Y ) = ( Base ` T ) |
9 |
8
|
a1i |
|- ( ph -> ( X X. Y ) = ( Base ` T ) ) |
10 |
|
eqidd |
|- ( ph -> ( Hom ` T ) = ( Hom ` T ) ) |
11 |
|
eqidd |
|- ( ph -> ( comp ` T ) = ( comp ` T ) ) |
12 |
1
|
ovexi |
|- T e. _V |
13 |
12
|
a1i |
|- ( ph -> T e. _V ) |
14 |
|
biid |
|- ( ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) <-> ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) |
15 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
16 |
2
|
adantr |
|- ( ( ph /\ t e. ( X X. Y ) ) -> C e. Cat ) |
17 |
|
xp1st |
|- ( t e. ( X X. Y ) -> ( 1st ` t ) e. X ) |
18 |
17
|
adantl |
|- ( ( ph /\ t e. ( X X. Y ) ) -> ( 1st ` t ) e. X ) |
19 |
4 15 6 16 18
|
catidcl |
|- ( ( ph /\ t e. ( X X. Y ) ) -> ( I ` ( 1st ` t ) ) e. ( ( 1st ` t ) ( Hom ` C ) ( 1st ` t ) ) ) |
20 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
21 |
3
|
adantr |
|- ( ( ph /\ t e. ( X X. Y ) ) -> D e. Cat ) |
22 |
|
xp2nd |
|- ( t e. ( X X. Y ) -> ( 2nd ` t ) e. Y ) |
23 |
22
|
adantl |
|- ( ( ph /\ t e. ( X X. Y ) ) -> ( 2nd ` t ) e. Y ) |
24 |
5 20 7 21 23
|
catidcl |
|- ( ( ph /\ t e. ( X X. Y ) ) -> ( J ` ( 2nd ` t ) ) e. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` t ) ) ) |
25 |
19 24
|
opelxpd |
|- ( ( ph /\ t e. ( X X. Y ) ) -> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` t ) ) ) ) |
26 |
|
eqid |
|- ( Hom ` T ) = ( Hom ` T ) |
27 |
|
simpr |
|- ( ( ph /\ t e. ( X X. Y ) ) -> t e. ( X X. Y ) ) |
28 |
1 8 15 20 26 27 27
|
xpchom |
|- ( ( ph /\ t e. ( X X. Y ) ) -> ( t ( Hom ` T ) t ) = ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` t ) ) ) ) |
29 |
25 28
|
eleqtrrd |
|- ( ( ph /\ t e. ( X X. Y ) ) -> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. e. ( t ( Hom ` T ) t ) ) |
30 |
|
fvex |
|- ( I ` ( 1st ` t ) ) e. _V |
31 |
|
fvex |
|- ( J ` ( 2nd ` t ) ) e. _V |
32 |
30 31
|
op1st |
|- ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = ( I ` ( 1st ` t ) ) |
33 |
32
|
oveq1i |
|- ( ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) = ( ( I ` ( 1st ` t ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) |
34 |
2
|
adantr |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> C e. Cat ) |
35 |
|
simpr1l |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> s e. ( X X. Y ) ) |
36 |
|
xp1st |
|- ( s e. ( X X. Y ) -> ( 1st ` s ) e. X ) |
37 |
35 36
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` s ) e. X ) |
38 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
39 |
|
simpr1r |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> t e. ( X X. Y ) ) |
40 |
39 17
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` t ) e. X ) |
41 |
|
simpr31 |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> f e. ( s ( Hom ` T ) t ) ) |
42 |
1 8 15 20 26 35 39
|
xpchom |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( s ( Hom ` T ) t ) = ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) ) |
43 |
41 42
|
eleqtrd |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> f e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) ) |
44 |
|
xp1st |
|- ( f e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) -> ( 1st ` f ) e. ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) ) |
45 |
43 44
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` f ) e. ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) ) |
46 |
4 15 6 34 37 38 40 45
|
catlid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( I ` ( 1st ` t ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) = ( 1st ` f ) ) |
47 |
33 46
|
eqtrid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) = ( 1st ` f ) ) |
48 |
30 31
|
op2nd |
|- ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = ( J ` ( 2nd ` t ) ) |
49 |
48
|
oveq1i |
|- ( ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) = ( ( J ` ( 2nd ` t ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) |
50 |
3
|
adantr |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> D e. Cat ) |
51 |
|
xp2nd |
|- ( s e. ( X X. Y ) -> ( 2nd ` s ) e. Y ) |
52 |
35 51
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` s ) e. Y ) |
53 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
54 |
39 22
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` t ) e. Y ) |
55 |
|
xp2nd |
|- ( f e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) -> ( 2nd ` f ) e. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) |
56 |
43 55
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` f ) e. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) |
57 |
5 20 7 50 52 53 54 56
|
catlid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( J ` ( 2nd ` t ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) = ( 2nd ` f ) ) |
58 |
49 57
|
eqtrid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) = ( 2nd ` f ) ) |
59 |
47 58
|
opeq12d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) , ( ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) >. = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
60 |
|
eqid |
|- ( comp ` T ) = ( comp ` T ) |
61 |
39 29
|
syldan |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. e. ( t ( Hom ` T ) t ) ) |
62 |
1 8 26 38 53 60 35 39 39 41 61
|
xpcco |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ( <. s , t >. ( comp ` T ) t ) f ) = <. ( ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` t ) ) ( 1st ` f ) ) , ( ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` t ) ) ( 2nd ` f ) ) >. ) |
63 |
|
1st2nd2 |
|- ( f e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` t ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` t ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
64 |
43 63
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> f = <. ( 1st ` f ) , ( 2nd ` f ) >. ) |
65 |
59 62 64
|
3eqtr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ( <. s , t >. ( comp ` T ) t ) f ) = f ) |
66 |
32
|
oveq2i |
|- ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) = ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( I ` ( 1st ` t ) ) ) |
67 |
|
simpr2l |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> u e. ( X X. Y ) ) |
68 |
|
xp1st |
|- ( u e. ( X X. Y ) -> ( 1st ` u ) e. X ) |
69 |
67 68
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` u ) e. X ) |
70 |
|
simpr32 |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> g e. ( t ( Hom ` T ) u ) ) |
71 |
1 8 15 20 26 39 67
|
xpchom |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( t ( Hom ` T ) u ) = ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) ) |
72 |
70 71
|
eleqtrd |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> g e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) ) |
73 |
|
xp1st |
|- ( g e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) -> ( 1st ` g ) e. ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) ) |
74 |
72 73
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` g ) e. ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) ) |
75 |
4 15 6 34 40 38 69 74
|
catrid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( I ` ( 1st ` t ) ) ) = ( 1st ` g ) ) |
76 |
66 75
|
eqtrid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) = ( 1st ` g ) ) |
77 |
48
|
oveq2i |
|- ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) = ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( J ` ( 2nd ` t ) ) ) |
78 |
|
xp2nd |
|- ( u e. ( X X. Y ) -> ( 2nd ` u ) e. Y ) |
79 |
67 78
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` u ) e. Y ) |
80 |
|
xp2nd |
|- ( g e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) -> ( 2nd ` g ) e. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) |
81 |
72 80
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` g ) e. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) |
82 |
5 20 7 50 54 53 79 81
|
catrid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( J ` ( 2nd ` t ) ) ) = ( 2nd ` g ) ) |
83 |
77 82
|
eqtrid |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) = ( 2nd ` g ) ) |
84 |
76 83
|
opeq12d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) >. = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
85 |
1 8 26 38 53 60 39 39 67 61 70
|
xpcco |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( g ( <. t , t >. ( comp ` T ) u ) <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = <. ( ( 1st ` g ) ( <. ( 1st ` t ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` t ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) >. ) |
86 |
|
1st2nd2 |
|- ( g e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` u ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
87 |
72 86
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
88 |
84 85 87
|
3eqtr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( g ( <. t , t >. ( comp ` T ) u ) <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = g ) |
89 |
4 15 38 34 37 40 69 45 74
|
catcocl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) e. ( ( 1st ` s ) ( Hom ` C ) ( 1st ` u ) ) ) |
90 |
5 20 53 50 52 54 79 56 81
|
catcocl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) e. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` u ) ) ) |
91 |
89 90
|
opelxpd |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. e. ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` u ) ) ) ) |
92 |
1 8 26 38 53 60 35 39 67 41 70
|
xpcco |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( g ( <. s , t >. ( comp ` T ) u ) f ) = <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) |
93 |
1 8 15 20 26 35 67
|
xpchom |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( s ( Hom ` T ) u ) = ( ( ( 1st ` s ) ( Hom ` C ) ( 1st ` u ) ) X. ( ( 2nd ` s ) ( Hom ` D ) ( 2nd ` u ) ) ) ) |
94 |
91 92 93
|
3eltr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( g ( <. s , t >. ( comp ` T ) u ) f ) e. ( s ( Hom ` T ) u ) ) |
95 |
|
simpr2r |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> v e. ( X X. Y ) ) |
96 |
|
xp1st |
|- ( v e. ( X X. Y ) -> ( 1st ` v ) e. X ) |
97 |
95 96
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` v ) e. X ) |
98 |
|
simpr33 |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> h e. ( u ( Hom ` T ) v ) ) |
99 |
1 8 15 20 26 67 95
|
xpchom |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( u ( Hom ` T ) v ) = ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
100 |
98 99
|
eleqtrd |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> h e. ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
101 |
|
xp1st |
|- ( h e. ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) -> ( 1st ` h ) e. ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) ) |
102 |
100 101
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` h ) e. ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) ) |
103 |
4 15 38 34 37 40 69 45 74 97 102
|
catass |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) = ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) ) ) |
104 |
1 8 26 38 53 60 39 67 95 70 98
|
xpcco |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( h ( <. t , u >. ( comp ` T ) v ) g ) = <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) |
105 |
104
|
fveq2d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) = ( 1st ` <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) ) |
106 |
|
ovex |
|- ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) e. _V |
107 |
|
ovex |
|- ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) e. _V |
108 |
106 107
|
op1st |
|- ( 1st ` <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) = ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) |
109 |
105 108
|
eqtrdi |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) = ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) ) |
110 |
109
|
oveq1d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) = ( ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) ) |
111 |
92
|
fveq2d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = ( 1st ` <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) ) |
112 |
|
ovex |
|- ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) e. _V |
113 |
|
ovex |
|- ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) e. _V |
114 |
112 113
|
op1st |
|- ( 1st ` <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) = ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) |
115 |
111 114
|
eqtrdi |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) ) |
116 |
115
|
oveq2d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) = ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) ) ) |
117 |
103 110 116
|
3eqtr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) = ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) ) |
118 |
|
xp2nd |
|- ( v e. ( X X. Y ) -> ( 2nd ` v ) e. Y ) |
119 |
95 118
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` v ) e. Y ) |
120 |
|
xp2nd |
|- ( h e. ( ( ( 1st ` u ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) -> ( 2nd ` h ) e. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) |
121 |
100 120
|
syl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` h ) e. ( ( 2nd ` u ) ( Hom ` D ) ( 2nd ` v ) ) ) |
122 |
5 20 53 50 52 54 79 56 81 119 121
|
catass |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) = ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) ) ) |
123 |
104
|
fveq2d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) = ( 2nd ` <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) ) |
124 |
106 107
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. ) = ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) |
125 |
123 124
|
eqtrdi |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) = ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) ) |
126 |
125
|
oveq1d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) = ( ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) ) |
127 |
92
|
fveq2d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = ( 2nd ` <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) ) |
128 |
112 113
|
op2nd |
|- ( 2nd ` <. ( ( 1st ` g ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` u ) ) ( 1st ` f ) ) , ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) >. ) = ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) |
129 |
127 128
|
eqtrdi |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) ) |
130 |
129
|
oveq2d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) = ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( ( 2nd ` g ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` u ) ) ( 2nd ` f ) ) ) ) |
131 |
122 126 130
|
3eqtr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) = ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) ) |
132 |
117 131
|
opeq12d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) , ( ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) >. = <. ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) >. ) |
133 |
4 15 38 34 40 69 97 74 102
|
catcocl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) e. ( ( 1st ` t ) ( Hom ` C ) ( 1st ` v ) ) ) |
134 |
5 20 53 50 54 79 119 81 121
|
catcocl |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) e. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` v ) ) ) |
135 |
133 134
|
opelxpd |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> <. ( ( 1st ` h ) ( <. ( 1st ` t ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` g ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` t ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` g ) ) >. e. ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
136 |
1 8 15 20 26 39 95
|
xpchom |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( t ( Hom ` T ) v ) = ( ( ( 1st ` t ) ( Hom ` C ) ( 1st ` v ) ) X. ( ( 2nd ` t ) ( Hom ` D ) ( 2nd ` v ) ) ) ) |
137 |
135 104 136
|
3eltr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( h ( <. t , u >. ( comp ` T ) v ) g ) e. ( t ( Hom ` T ) v ) ) |
138 |
1 8 26 38 53 60 35 39 95 41 137
|
xpcco |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( h ( <. t , u >. ( comp ` T ) v ) g ) ( <. s , t >. ( comp ` T ) v ) f ) = <. ( ( 1st ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 1st ` s ) , ( 1st ` t ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` f ) ) , ( ( 2nd ` ( h ( <. t , u >. ( comp ` T ) v ) g ) ) ( <. ( 2nd ` s ) , ( 2nd ` t ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` f ) ) >. ) |
139 |
1 8 26 38 53 60 35 67 95 94 98
|
xpcco |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( h ( <. s , u >. ( comp ` T ) v ) ( g ( <. s , t >. ( comp ` T ) u ) f ) ) = <. ( ( 1st ` h ) ( <. ( 1st ` s ) , ( 1st ` u ) >. ( comp ` C ) ( 1st ` v ) ) ( 1st ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) , ( ( 2nd ` h ) ( <. ( 2nd ` s ) , ( 2nd ` u ) >. ( comp ` D ) ( 2nd ` v ) ) ( 2nd ` ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) >. ) |
140 |
132 138 139
|
3eqtr4d |
|- ( ( ph /\ ( ( s e. ( X X. Y ) /\ t e. ( X X. Y ) ) /\ ( u e. ( X X. Y ) /\ v e. ( X X. Y ) ) /\ ( f e. ( s ( Hom ` T ) t ) /\ g e. ( t ( Hom ` T ) u ) /\ h e. ( u ( Hom ` T ) v ) ) ) ) -> ( ( h ( <. t , u >. ( comp ` T ) v ) g ) ( <. s , t >. ( comp ` T ) v ) f ) = ( h ( <. s , u >. ( comp ` T ) v ) ( g ( <. s , t >. ( comp ` T ) u ) f ) ) ) |
141 |
9 10 11 13 14 29 65 88 94 140
|
iscatd2 |
|- ( ph -> ( T e. Cat /\ ( Id ` T ) = ( t e. ( X X. Y ) |-> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) ) |
142 |
|
vex |
|- x e. _V |
143 |
|
vex |
|- y e. _V |
144 |
142 143
|
op1std |
|- ( t = <. x , y >. -> ( 1st ` t ) = x ) |
145 |
144
|
fveq2d |
|- ( t = <. x , y >. -> ( I ` ( 1st ` t ) ) = ( I ` x ) ) |
146 |
142 143
|
op2ndd |
|- ( t = <. x , y >. -> ( 2nd ` t ) = y ) |
147 |
146
|
fveq2d |
|- ( t = <. x , y >. -> ( J ` ( 2nd ` t ) ) = ( J ` y ) ) |
148 |
145 147
|
opeq12d |
|- ( t = <. x , y >. -> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. = <. ( I ` x ) , ( J ` y ) >. ) |
149 |
148
|
mpompt |
|- ( t e. ( X X. Y ) |-> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) |
150 |
149
|
eqeq2i |
|- ( ( Id ` T ) = ( t e. ( X X. Y ) |-> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) <-> ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) |
151 |
150
|
anbi2i |
|- ( ( T e. Cat /\ ( Id ` T ) = ( t e. ( X X. Y ) |-> <. ( I ` ( 1st ` t ) ) , ( J ` ( 2nd ` t ) ) >. ) ) <-> ( T e. Cat /\ ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) ) |
152 |
141 151
|
sylib |
|- ( ph -> ( T e. Cat /\ ( Id ` T ) = ( x e. X , y e. Y |-> <. ( I ` x ) , ( J ` y ) >. ) ) ) |