Metamath Proof Explorer


Theorem mpompt

Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypothesis mpompt.1 z=xyC=D
Assertion mpompt zA×BC=xA,yBD

Proof

Step Hyp Ref Expression
1 mpompt.1 z=xyC=D
2 iunxpconst xAx×B=A×B
3 2 mpteq1i zxAx×BC=zA×BC
4 1 mpomptx zxAx×BC=xA,yBD
5 3 4 eqtr3i zA×BC=xA,yBD