Metamath Proof Explorer


Theorem catidcl

Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses catidcl.b B=BaseC
catidcl.h H=HomC
catidcl.i 1˙=IdC
catidcl.c φCCat
catidcl.x φXB
Assertion catidcl φ1˙XXHX

Proof

Step Hyp Ref Expression
1 catidcl.b B=BaseC
2 catidcl.h H=HomC
3 catidcl.i 1˙=IdC
4 catidcl.c φCCat
5 catidcl.x φXB
6 eqid compC=compC
7 1 2 6 4 3 5 cidval φ1˙X=ιgXHX|yBfyHXgyXcompCXf=ffXHyfXXcompCyg=f
8 1 2 6 4 5 catideu φ∃!gXHXyBfyHXgyXcompCXf=ffXHyfXXcompCyg=f
9 riotacl ∃!gXHXyBfyHXgyXcompCXf=ffXHyfXXcompCyg=fιgXHX|yBfyHXgyXcompCXf=ffXHyfXXcompCyg=fXHX
10 8 9 syl φιgXHX|yBfyHXgyXcompCXf=ffXHyfXXcompCyg=fXHX
11 7 10 eqeltrd φ1˙XXHX