| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1stfval.t |
|- T = ( C Xc. D ) |
| 2 |
|
1stfval.b |
|- B = ( Base ` T ) |
| 3 |
|
1stfval.h |
|- H = ( Hom ` T ) |
| 4 |
|
1stfval.c |
|- ( ph -> C e. Cat ) |
| 5 |
|
1stfval.d |
|- ( ph -> D e. Cat ) |
| 6 |
|
1stfval.p |
|- P = ( C 1stF D ) |
| 7 |
|
fvex |
|- ( Base ` c ) e. _V |
| 8 |
|
fvex |
|- ( Base ` d ) e. _V |
| 9 |
7 8
|
xpex |
|- ( ( Base ` c ) X. ( Base ` d ) ) e. _V |
| 10 |
9
|
a1i |
|- ( ( c = C /\ d = D ) -> ( ( Base ` c ) X. ( Base ` d ) ) e. _V ) |
| 11 |
|
simpl |
|- ( ( c = C /\ d = D ) -> c = C ) |
| 12 |
11
|
fveq2d |
|- ( ( c = C /\ d = D ) -> ( Base ` c ) = ( Base ` C ) ) |
| 13 |
|
simpr |
|- ( ( c = C /\ d = D ) -> d = D ) |
| 14 |
13
|
fveq2d |
|- ( ( c = C /\ d = D ) -> ( Base ` d ) = ( Base ` D ) ) |
| 15 |
12 14
|
xpeq12d |
|- ( ( c = C /\ d = D ) -> ( ( Base ` c ) X. ( Base ` d ) ) = ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 16 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 17 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 18 |
1 16 17
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` T ) |
| 19 |
18 2
|
eqtr4i |
|- ( ( Base ` C ) X. ( Base ` D ) ) = B |
| 20 |
15 19
|
eqtrdi |
|- ( ( c = C /\ d = D ) -> ( ( Base ` c ) X. ( Base ` d ) ) = B ) |
| 21 |
|
simpr |
|- ( ( ( c = C /\ d = D ) /\ b = B ) -> b = B ) |
| 22 |
21
|
reseq2d |
|- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( 1st |` b ) = ( 1st |` B ) ) |
| 23 |
|
simpll |
|- ( ( ( c = C /\ d = D ) /\ b = B ) -> c = C ) |
| 24 |
|
simplr |
|- ( ( ( c = C /\ d = D ) /\ b = B ) -> d = D ) |
| 25 |
23 24
|
oveq12d |
|- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( c Xc. d ) = ( C Xc. D ) ) |
| 26 |
25 1
|
eqtr4di |
|- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( c Xc. d ) = T ) |
| 27 |
26
|
fveq2d |
|- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( Hom ` ( c Xc. d ) ) = ( Hom ` T ) ) |
| 28 |
27 3
|
eqtr4di |
|- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( Hom ` ( c Xc. d ) ) = H ) |
| 29 |
28
|
oveqd |
|- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( x ( Hom ` ( c Xc. d ) ) y ) = ( x H y ) ) |
| 30 |
29
|
reseq2d |
|- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( 1st |` ( x ( Hom ` ( c Xc. d ) ) y ) ) = ( 1st |` ( x H y ) ) ) |
| 31 |
21 21 30
|
mpoeq123dv |
|- ( ( ( c = C /\ d = D ) /\ b = B ) -> ( x e. b , y e. b |-> ( 1st |` ( x ( Hom ` ( c Xc. d ) ) y ) ) ) = ( x e. B , y e. B |-> ( 1st |` ( x H y ) ) ) ) |
| 32 |
22 31
|
opeq12d |
|- ( ( ( c = C /\ d = D ) /\ b = B ) -> <. ( 1st |` b ) , ( x e. b , y e. b |-> ( 1st |` ( x ( Hom ` ( c Xc. d ) ) y ) ) ) >. = <. ( 1st |` B ) , ( x e. B , y e. B |-> ( 1st |` ( x H y ) ) ) >. ) |
| 33 |
10 20 32
|
csbied2 |
|- ( ( c = C /\ d = D ) -> [_ ( ( Base ` c ) X. ( Base ` d ) ) / b ]_ <. ( 1st |` b ) , ( x e. b , y e. b |-> ( 1st |` ( x ( Hom ` ( c Xc. d ) ) y ) ) ) >. = <. ( 1st |` B ) , ( x e. B , y e. B |-> ( 1st |` ( x H y ) ) ) >. ) |
| 34 |
|
df-1stf |
|- 1stF = ( c e. Cat , d e. Cat |-> [_ ( ( Base ` c ) X. ( Base ` d ) ) / b ]_ <. ( 1st |` b ) , ( x e. b , y e. b |-> ( 1st |` ( x ( Hom ` ( c Xc. d ) ) y ) ) ) >. ) |
| 35 |
|
opex |
|- <. ( 1st |` B ) , ( x e. B , y e. B |-> ( 1st |` ( x H y ) ) ) >. e. _V |
| 36 |
33 34 35
|
ovmpoa |
|- ( ( C e. Cat /\ D e. Cat ) -> ( C 1stF D ) = <. ( 1st |` B ) , ( x e. B , y e. B |-> ( 1st |` ( x H y ) ) ) >. ) |
| 37 |
4 5 36
|
syl2anc |
|- ( ph -> ( C 1stF D ) = <. ( 1st |` B ) , ( x e. B , y e. B |-> ( 1st |` ( x H y ) ) ) >. ) |
| 38 |
6 37
|
eqtrid |
|- ( ph -> P = <. ( 1st |` B ) , ( x e. B , y e. B |-> ( 1st |` ( x H y ) ) ) >. ) |