Metamath Proof Explorer


Theorem oppchofcl

Description: Closure of the opposite Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses oppchofcl.o O = oppCat C
oppchofcl.m M = Hom F O
oppchofcl.d D = SetCat U
oppchofcl.c φ C Cat
oppchofcl.u φ U V
oppchofcl.h φ ran Hom 𝑓 C U
Assertion oppchofcl φ M C × c O Func D

Proof

Step Hyp Ref Expression
1 oppchofcl.o O = oppCat C
2 oppchofcl.m M = Hom F O
3 oppchofcl.d D = SetCat U
4 oppchofcl.c φ C Cat
5 oppchofcl.u φ U V
6 oppchofcl.h φ ran Hom 𝑓 C U
7 eqid oppCat O = oppCat O
8 1 oppccat C Cat O Cat
9 4 8 syl φ O Cat
10 eqid Hom 𝑓 C = Hom 𝑓 C
11 1 10 oppchomf tpos Hom 𝑓 C = Hom 𝑓 O
12 11 rneqi ran tpos Hom 𝑓 C = ran Hom 𝑓 O
13 relxp Rel Base C × Base C
14 eqid Base C = Base C
15 10 14 homffn Hom 𝑓 C Fn Base C × Base C
16 15 fndmi dom Hom 𝑓 C = Base C × Base C
17 16 releqi Rel dom Hom 𝑓 C Rel Base C × Base C
18 13 17 mpbir Rel dom Hom 𝑓 C
19 rntpos Rel dom Hom 𝑓 C ran tpos Hom 𝑓 C = ran Hom 𝑓 C
20 18 19 ax-mp ran tpos Hom 𝑓 C = ran Hom 𝑓 C
21 12 20 eqtr3i ran Hom 𝑓 O = ran Hom 𝑓 C
22 21 6 eqsstrid φ ran Hom 𝑓 O U
23 2 7 3 9 5 22 hofcl φ M oppCat O × c O Func D
24 1 2oppchomf Hom 𝑓 C = Hom 𝑓 oppCat O
25 24 a1i φ Hom 𝑓 C = Hom 𝑓 oppCat O
26 1 2oppccomf comp 𝑓 C = comp 𝑓 oppCat O
27 26 a1i φ comp 𝑓 C = comp 𝑓 oppCat O
28 eqidd φ Hom 𝑓 O = Hom 𝑓 O
29 eqidd φ comp 𝑓 O = comp 𝑓 O
30 7 oppccat O Cat oppCat O Cat
31 9 30 syl φ oppCat O Cat
32 25 27 28 29 4 31 9 9 xpcpropd φ C × c O = oppCat O × c O
33 32 oveq1d φ C × c O Func D = oppCat O × c O Func D
34 23 33 eleqtrrd φ M C × c O Func D