Metamath Proof Explorer


Theorem xpcpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same product category. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses xpcpropd.1 φ Hom 𝑓 A = Hom 𝑓 B
xpcpropd.2 φ comp 𝑓 A = comp 𝑓 B
xpcpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
xpcpropd.4 φ comp 𝑓 C = comp 𝑓 D
xpcpropd.a φ A V
xpcpropd.b φ B V
xpcpropd.c φ C V
xpcpropd.d φ D V
Assertion xpcpropd φ A × c C = B × c D

Proof

Step Hyp Ref Expression
1 xpcpropd.1 φ Hom 𝑓 A = Hom 𝑓 B
2 xpcpropd.2 φ comp 𝑓 A = comp 𝑓 B
3 xpcpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
4 xpcpropd.4 φ comp 𝑓 C = comp 𝑓 D
5 xpcpropd.a φ A V
6 xpcpropd.b φ B V
7 xpcpropd.c φ C V
8 xpcpropd.d φ D V
9 eqid A × c C = A × c C
10 eqid Base A = Base A
11 eqid Base C = Base C
12 eqid Hom A = Hom A
13 eqid Hom C = Hom C
14 eqid comp A = comp A
15 eqid comp C = comp C
16 eqidd φ Base A × Base C = Base A × Base C
17 9 10 11 xpcbas Base A × Base C = Base A × c C
18 eqid Hom A × c C = Hom A × c C
19 9 17 12 13 18 xpchomfval Hom A × c C = u Base A × Base C , v Base A × Base C 1 st u Hom A 1 st v × 2 nd u Hom C 2 nd v
20 19 a1i φ Hom A × c C = u Base A × Base C , v Base A × Base C 1 st u Hom A 1 st v × 2 nd u Hom C 2 nd v
21 eqidd φ x Base A × Base C × Base A × Base C , y Base A × Base C g 2 nd x Hom A × c C y , f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp A 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp C 2 nd y 2 nd f = x Base A × Base C × Base A × Base C , y Base A × Base C g 2 nd x Hom A × c C y , f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp A 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp C 2 nd y 2 nd f
22 9 10 11 12 13 14 15 5 7 16 20 21 xpcval φ A × c C = Base ndx Base A × Base C Hom ndx Hom A × c C comp ndx x Base A × Base C × Base A × Base C , y Base A × Base C g 2 nd x Hom A × c C y , f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp A 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp C 2 nd y 2 nd f
23 eqid B × c D = B × c D
24 eqid Base B = Base B
25 eqid Base D = Base D
26 eqid Hom B = Hom B
27 eqid Hom D = Hom D
28 eqid comp B = comp B
29 eqid comp D = comp D
30 1 homfeqbas φ Base A = Base B
31 3 homfeqbas φ Base C = Base D
32 30 31 xpeq12d φ Base A × Base C = Base B × Base D
33 1 3ad2ant1 φ u Base A × Base C v Base A × Base C Hom 𝑓 A = Hom 𝑓 B
34 xp1st u Base A × Base C 1 st u Base A
35 34 3ad2ant2 φ u Base A × Base C v Base A × Base C 1 st u Base A
36 xp1st v Base A × Base C 1 st v Base A
37 36 3ad2ant3 φ u Base A × Base C v Base A × Base C 1 st v Base A
38 10 12 26 33 35 37 homfeqval φ u Base A × Base C v Base A × Base C 1 st u Hom A 1 st v = 1 st u Hom B 1 st v
39 3 3ad2ant1 φ u Base A × Base C v Base A × Base C Hom 𝑓 C = Hom 𝑓 D
40 xp2nd u Base A × Base C 2 nd u Base C
41 40 3ad2ant2 φ u Base A × Base C v Base A × Base C 2 nd u Base C
42 xp2nd v Base A × Base C 2 nd v Base C
43 42 3ad2ant3 φ u Base A × Base C v Base A × Base C 2 nd v Base C
44 11 13 27 39 41 43 homfeqval φ u Base A × Base C v Base A × Base C 2 nd u Hom C 2 nd v = 2 nd u Hom D 2 nd v
45 38 44 xpeq12d φ u Base A × Base C v Base A × Base C 1 st u Hom A 1 st v × 2 nd u Hom C 2 nd v = 1 st u Hom B 1 st v × 2 nd u Hom D 2 nd v
46 45 mpoeq3dva φ u Base A × Base C , v Base A × Base C 1 st u Hom A 1 st v × 2 nd u Hom C 2 nd v = u Base A × Base C , v Base A × Base C 1 st u Hom B 1 st v × 2 nd u Hom D 2 nd v
47 19 46 syl5eq φ Hom A × c C = u Base A × Base C , v Base A × Base C 1 st u Hom B 1 st v × 2 nd u Hom D 2 nd v
48 1 ad4antr φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x Hom 𝑓 A = Hom 𝑓 B
49 2 ad4antr φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x comp 𝑓 A = comp 𝑓 B
50 simp-4r φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x x Base A × Base C × Base A × Base C
51 xp1st x Base A × Base C × Base A × Base C 1 st x Base A × Base C
52 50 51 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 1 st x Base A × Base C
53 xp1st 1 st x Base A × Base C 1 st 1 st x Base A
54 52 53 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 1 st 1 st x Base A
55 xp2nd x Base A × Base C × Base A × Base C 2 nd x Base A × Base C
56 50 55 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 2 nd x Base A × Base C
57 xp1st 2 nd x Base A × Base C 1 st 2 nd x Base A
58 56 57 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 1 st 2 nd x Base A
59 simpllr φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x y Base A × Base C
60 xp1st y Base A × Base C 1 st y Base A
61 59 60 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 1 st y Base A
62 simpr φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x f Hom A × c C x
63 1st2nd2 x Base A × Base C × Base A × Base C x = 1 st x 2 nd x
64 50 63 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x x = 1 st x 2 nd x
65 64 fveq2d φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x Hom A × c C x = Hom A × c C 1 st x 2 nd x
66 df-ov 1 st x Hom A × c C 2 nd x = Hom A × c C 1 st x 2 nd x
67 65 66 eqtr4di φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x Hom A × c C x = 1 st x Hom A × c C 2 nd x
68 9 17 12 13 18 52 56 xpchom φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 1 st x Hom A × c C 2 nd x = 1 st 1 st x Hom A 1 st 2 nd x × 2 nd 1 st x Hom C 2 nd 2 nd x
69 67 68 eqtrd φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x Hom A × c C x = 1 st 1 st x Hom A 1 st 2 nd x × 2 nd 1 st x Hom C 2 nd 2 nd x
70 62 69 eleqtrd φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x f 1 st 1 st x Hom A 1 st 2 nd x × 2 nd 1 st x Hom C 2 nd 2 nd x
71 xp1st f 1 st 1 st x Hom A 1 st 2 nd x × 2 nd 1 st x Hom C 2 nd 2 nd x 1 st f 1 st 1 st x Hom A 1 st 2 nd x
72 70 71 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 1 st f 1 st 1 st x Hom A 1 st 2 nd x
73 simplr φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x g 2 nd x Hom A × c C y
74 9 17 12 13 18 56 59 xpchom φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 2 nd x Hom A × c C y = 1 st 2 nd x Hom A 1 st y × 2 nd 2 nd x Hom C 2 nd y
75 73 74 eleqtrd φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x g 1 st 2 nd x Hom A 1 st y × 2 nd 2 nd x Hom C 2 nd y
76 xp1st g 1 st 2 nd x Hom A 1 st y × 2 nd 2 nd x Hom C 2 nd y 1 st g 1 st 2 nd x Hom A 1 st y
77 75 76 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 1 st g 1 st 2 nd x Hom A 1 st y
78 10 12 14 28 48 49 54 58 61 72 77 comfeqval φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp A 1 st y 1 st f = 1 st g 1 st 1 st x 1 st 2 nd x comp B 1 st y 1 st f
79 3 ad4antr φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x Hom 𝑓 C = Hom 𝑓 D
80 4 ad4antr φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x comp 𝑓 C = comp 𝑓 D
81 xp2nd 1 st x Base A × Base C 2 nd 1 st x Base C
82 52 81 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 2 nd 1 st x Base C
83 xp2nd 2 nd x Base A × Base C 2 nd 2 nd x Base C
84 56 83 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 2 nd 2 nd x Base C
85 xp2nd y Base A × Base C 2 nd y Base C
86 59 85 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 2 nd y Base C
87 xp2nd f 1 st 1 st x Hom A 1 st 2 nd x × 2 nd 1 st x Hom C 2 nd 2 nd x 2 nd f 2 nd 1 st x Hom C 2 nd 2 nd x
88 70 87 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 2 nd f 2 nd 1 st x Hom C 2 nd 2 nd x
89 xp2nd g 1 st 2 nd x Hom A 1 st y × 2 nd 2 nd x Hom C 2 nd y 2 nd g 2 nd 2 nd x Hom C 2 nd y
90 75 89 syl φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 2 nd g 2 nd 2 nd x Hom C 2 nd y
91 11 13 15 29 79 80 82 84 86 88 90 comfeqval φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 2 nd g 2 nd 1 st x 2 nd 2 nd x comp C 2 nd y 2 nd f = 2 nd g 2 nd 1 st x 2 nd 2 nd x comp D 2 nd y 2 nd f
92 78 91 opeq12d φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp A 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp C 2 nd y 2 nd f = 1 st g 1 st 1 st x 1 st 2 nd x comp B 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp D 2 nd y 2 nd f
93 92 3impa φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp A 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp C 2 nd y 2 nd f = 1 st g 1 st 1 st x 1 st 2 nd x comp B 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp D 2 nd y 2 nd f
94 93 mpoeq3dva φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y , f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp A 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp C 2 nd y 2 nd f = g 2 nd x Hom A × c C y , f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp B 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp D 2 nd y 2 nd f
95 94 3impa φ x Base A × Base C × Base A × Base C y Base A × Base C g 2 nd x Hom A × c C y , f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp A 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp C 2 nd y 2 nd f = g 2 nd x Hom A × c C y , f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp B 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp D 2 nd y 2 nd f
96 95 mpoeq3dva φ x Base A × Base C × Base A × Base C , y Base A × Base C g 2 nd x Hom A × c C y , f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp A 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp C 2 nd y 2 nd f = x Base A × Base C × Base A × Base C , y Base A × Base C g 2 nd x Hom A × c C y , f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp B 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp D 2 nd y 2 nd f
97 23 24 25 26 27 28 29 6 8 32 47 96 xpcval φ B × c D = Base ndx Base A × Base C Hom ndx Hom A × c C comp ndx x Base A × Base C × Base A × Base C , y Base A × Base C g 2 nd x Hom A × c C y , f Hom A × c C x 1 st g 1 st 1 st x 1 st 2 nd x comp A 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp C 2 nd y 2 nd f
98 22 97 eqtr4d φ A × c C = B × c D