Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | comfeqval.b | |
|
comfeqval.h | |
||
comfeqval.1 | |
||
comfeqval.2 | |
||
comfeqval.3 | |
||
comfeqval.4 | |
||
comfeqval.x | |
||
comfeqval.y | |
||
comfeqval.z | |
||
comfeqval.f | |
||
comfeqval.g | |
||
Assertion | comfeqval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfeqval.b | |
|
2 | comfeqval.h | |
|
3 | comfeqval.1 | |
|
4 | comfeqval.2 | |
|
5 | comfeqval.3 | |
|
6 | comfeqval.4 | |
|
7 | comfeqval.x | |
|
8 | comfeqval.y | |
|
9 | comfeqval.z | |
|
10 | comfeqval.f | |
|
11 | comfeqval.g | |
|
12 | 6 | oveqd | |
13 | 12 | oveqd | |
14 | eqid | |
|
15 | 14 1 2 3 7 8 9 10 11 | comfval | |
16 | eqid | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | 5 | homfeqbas | |
20 | 1 19 | eqtrid | |
21 | 7 20 | eleqtrd | |
22 | 8 20 | eleqtrd | |
23 | 9 20 | eleqtrd | |
24 | 1 2 18 5 7 8 | homfeqval | |
25 | 10 24 | eleqtrd | |
26 | 1 2 18 5 8 9 | homfeqval | |
27 | 11 26 | eleqtrd | |
28 | 16 17 18 4 21 22 23 25 27 | comfval | |
29 | 13 15 28 | 3eqtr3d | |