Metamath Proof Explorer


Theorem comfeqval

Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfeqval.b 𝐵 = ( Base ‘ 𝐶 )
comfeqval.h 𝐻 = ( Hom ‘ 𝐶 )
comfeqval.1 · = ( comp ‘ 𝐶 )
comfeqval.2 = ( comp ‘ 𝐷 )
comfeqval.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
comfeqval.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
comfeqval.x ( 𝜑𝑋𝐵 )
comfeqval.y ( 𝜑𝑌𝐵 )
comfeqval.z ( 𝜑𝑍𝐵 )
comfeqval.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
comfeqval.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
Assertion comfeqval ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌 𝑍 ) 𝐹 ) )

Proof

Step Hyp Ref Expression
1 comfeqval.b 𝐵 = ( Base ‘ 𝐶 )
2 comfeqval.h 𝐻 = ( Hom ‘ 𝐶 )
3 comfeqval.1 · = ( comp ‘ 𝐶 )
4 comfeqval.2 = ( comp ‘ 𝐷 )
5 comfeqval.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
6 comfeqval.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
7 comfeqval.x ( 𝜑𝑋𝐵 )
8 comfeqval.y ( 𝜑𝑌𝐵 )
9 comfeqval.z ( 𝜑𝑍𝐵 )
10 comfeqval.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
11 comfeqval.g ( 𝜑𝐺 ∈ ( 𝑌 𝐻 𝑍 ) )
12 6 oveqd ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ( compf𝐶 ) 𝑍 ) = ( ⟨ 𝑋 , 𝑌 ⟩ ( compf𝐷 ) 𝑍 ) )
13 12 oveqd ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌 ⟩ ( compf𝐶 ) 𝑍 ) 𝐹 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌 ⟩ ( compf𝐷 ) 𝑍 ) 𝐹 ) )
14 eqid ( compf𝐶 ) = ( compf𝐶 )
15 14 1 2 3 7 8 9 10 11 comfval ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌 ⟩ ( compf𝐶 ) 𝑍 ) 𝐹 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) )
16 eqid ( compf𝐷 ) = ( compf𝐷 )
17 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
18 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
19 5 homfeqbas ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
20 1 19 syl5eq ( 𝜑𝐵 = ( Base ‘ 𝐷 ) )
21 7 20 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ 𝐷 ) )
22 8 20 eleqtrd ( 𝜑𝑌 ∈ ( Base ‘ 𝐷 ) )
23 9 20 eleqtrd ( 𝜑𝑍 ∈ ( Base ‘ 𝐷 ) )
24 1 2 18 5 7 8 homfeqval ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) )
25 10 24 eleqtrd ( 𝜑𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) )
26 1 2 18 5 8 9 homfeqval ( 𝜑 → ( 𝑌 𝐻 𝑍 ) = ( 𝑌 ( Hom ‘ 𝐷 ) 𝑍 ) )
27 11 26 eleqtrd ( 𝜑𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑍 ) )
28 16 17 18 4 21 22 23 25 27 comfval ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌 ⟩ ( compf𝐷 ) 𝑍 ) 𝐹 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌 𝑍 ) 𝐹 ) )
29 13 15 28 3eqtr3d ( 𝜑 → ( 𝐺 ( ⟨ 𝑋 , 𝑌· 𝑍 ) 𝐹 ) = ( 𝐺 ( ⟨ 𝑋 , 𝑌 𝑍 ) 𝐹 ) )