Metamath Proof Explorer


Theorem catpropd

Description: Two structures with the same base, hom-sets and composition operation are either both categories or neither. (Contributed by Mario Carneiro, 5-Jan-2017)

Ref Expression
Hypotheses catpropd.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
catpropd.2 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
catpropd.3 ( 𝜑𝐶𝑉 )
catpropd.4 ( 𝜑𝐷𝑊 )
Assertion catpropd ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) )

Proof

Step Hyp Ref Expression
1 catpropd.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
2 catpropd.2 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
3 catpropd.3 ( 𝜑𝐶𝑉 )
4 catpropd.4 ( 𝜑𝐷𝑊 )
5 simpl ( ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
6 5 2ralimi ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
7 6 2ralimi ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
8 7 adantl ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
9 8 ralimi ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
10 9 a1i ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) )
11 simpl ( ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
12 11 2ralimi ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
13 12 2ralimi ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
14 13 adantl ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
15 14 ralimi ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
16 15 a1i ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) )
17 nfra1 𝑦𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 )
18 nfv 𝑥𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 )
19 nfra1 𝑧𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 )
20 nfv 𝑦𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 )
21 nfra1 𝑔𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 )
22 nfv 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 )
23 oveq1 ( 𝑔 = → ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) )
24 23 eleq1d ( 𝑔 = → ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) )
25 24 cbvralvw ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
26 oveq2 ( 𝑓 = 𝑔 → ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) )
27 26 eleq1d ( 𝑓 = 𝑔 → ( ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) )
28 27 ralbidv ( 𝑓 = 𝑔 → ( ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) )
29 25 28 syl5bb ( 𝑓 = 𝑔 → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) )
30 21 22 29 cbvralw ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
31 oveq2 ( 𝑧 = 𝑤 → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) )
32 oveq2 ( 𝑧 = 𝑤 → ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) = ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) )
33 32 oveqd ( 𝑧 = 𝑤 → ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) = ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) )
34 oveq2 ( 𝑧 = 𝑤 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) )
35 33 34 eleq12d ( 𝑧 = 𝑤 → ( ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
36 31 35 raleqbidv ( 𝑧 = 𝑤 → ( ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
37 36 ralbidv ( 𝑧 = 𝑤 → ( ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
38 30 37 syl5bb ( 𝑧 = 𝑤 → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
39 38 cbvralvw ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) )
40 oveq2 ( 𝑦 = 𝑧 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
41 oveq1 ( 𝑦 = 𝑧 → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) )
42 opeq2 ( 𝑦 = 𝑧 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑥 , 𝑧 ⟩ )
43 42 oveq1d ( 𝑦 = 𝑧 → ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) = ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) )
44 43 oveqd ( 𝑦 = 𝑧 → ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) )
45 44 eleq1d ( 𝑦 = 𝑧 → ( ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
46 41 45 raleqbidv ( 𝑦 = 𝑧 → ( ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
47 40 46 raleqbidv ( 𝑦 = 𝑧 → ( ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
48 47 ralbidv ( 𝑦 = 𝑧 → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
49 39 48 syl5bb ( 𝑦 = 𝑧 → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
50 19 20 49 cbvralw ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) )
51 oveq1 ( 𝑥 = 𝑦 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) )
52 opeq1 ( 𝑥 = 𝑦 → ⟨ 𝑥 , 𝑧 ⟩ = ⟨ 𝑦 , 𝑧 ⟩ )
53 52 oveq1d ( 𝑥 = 𝑦 → ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) = ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) )
54 53 oveqd ( 𝑥 = 𝑦 → ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) = ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) )
55 oveq1 ( 𝑥 = 𝑦 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) )
56 54 55 eleq12d ( 𝑥 = 𝑦 → ( ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
57 56 ralbidv ( 𝑥 = 𝑦 → ( ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
58 51 57 raleqbidv ( 𝑥 = 𝑦 → ( ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
59 58 ralbidv ( 𝑥 = 𝑦 → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
60 ralcom ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) )
61 59 60 bitrdi ( 𝑥 = 𝑦 → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
62 61 ralbidv ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑤 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
63 50 62 syl5bb ( 𝑥 = 𝑦 → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
64 17 18 63 cbvralw ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) )
65 64 biimpi ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) )
66 65 ancri ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) )
67 r19.26 ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) )
68 r19.26 ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ↔ ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) )
69 r19.26 ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ↔ ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) )
70 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
71 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
72 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
73 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
74 1 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
75 74 ad4antr ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
76 75 ad4antr ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
77 2 ad5antr ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
78 77 ad4antr ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
79 simpllr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
80 79 ad2antrr ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
81 80 ad4antr ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
82 simp-4r ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
83 82 ad4antr ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
84 simpllr ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) )
85 simplr ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
86 85 ad4antr ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
87 simpr ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) )
88 70 71 72 73 76 78 81 83 84 86 87 comfeqval ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) )
89 simpllr ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) )
90 89 ad4antr ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) )
91 simp-4r ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) )
92 simplr ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) )
93 70 71 72 73 76 78 81 90 84 91 92 comfeqval ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) )
94 88 93 eqeq12d ( ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) )
95 94 ex ( ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) → ( ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) )
96 95 ralimdva ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) → ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) )
97 ralbi ( ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ( ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) )
98 96 97 syl6 ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) → ( ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) )
99 98 ralimdva ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) → ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ( ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) )
100 99 impancom ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ( ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) )
101 100 impr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ( ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) )
102 ralbi ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ( ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) )
103 101 102 syl ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) )
104 103 anbi2d ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) )
105 104 ex ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
106 105 ralimdva ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
107 69 106 syl5bir ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
108 107 expdimp ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
109 ralbi ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) )
110 108 109 syl6 ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
111 110 an32s ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
112 111 ralimdva ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
113 ralbi ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) )
114 112 113 syl6 ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
115 114 expimpd ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
116 115 ralimdva ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
117 ralbi ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) )
118 116 117 syl6 ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
119 68 118 syl5bir ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
120 119 ralimdva ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
121 ralbi ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) )
122 120 121 syl6 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
123 67 122 syl5bir ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
124 123 imp ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) )
125 124 an4s ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) )
126 125 anbi2d ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
127 126 expr ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) )
128 127 ralimdva ( ( 𝜑 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) )
129 128 expimpd ( 𝜑 → ( ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) )
130 ralbi ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
131 66 129 130 syl56 ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) ) )
132 10 16 131 pm5.21ndd ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
133 1 homfeqbas ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
134 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
135 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
136 70 71 134 74 135 135 homfeqval ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) )
137 133 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
138 74 ad2antrr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
139 simpr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
140 simpllr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
141 70 71 134 138 139 140 homfeqval ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) )
142 1 ad4antr ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
143 2 ad4antr ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
144 simplr ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
145 simp-4r ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
146 simpr ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) )
147 simpllr ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) )
148 70 71 72 73 142 143 144 145 145 146 147 comfeqval ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) )
149 148 eqeq1d ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ↔ ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ) )
150 141 149 raleqbidva ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ) )
151 70 71 134 138 140 139 homfeqval ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) )
152 1 ad4antr ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
153 2 ad4antr ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
154 simp-4r ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
155 simplr ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
156 simpllr ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) )
157 simpr ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
158 70 71 72 73 152 153 154 154 155 156 157 comfeqval ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) )
159 158 eqeq1d ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) )
160 151 159 raleqbidva ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) )
161 150 160 anbi12d ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) )
162 137 161 raleqbidva ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) )
163 136 162 rexeqbidva ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) )
164 133 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
165 164 adantr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
166 74 ad2antrr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
167 simplr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
168 70 71 134 166 79 167 homfeqval ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) )
169 simpr ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) )
170 70 71 134 166 167 169 homfeqval ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) )
171 170 adantr ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) )
172 simpr ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) )
173 70 71 72 73 75 77 80 82 89 85 172 comfeqval ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) )
174 70 71 134 166 79 169 homfeqval ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) )
175 174 ad2antrr ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) )
176 173 175 eleq12d ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ) )
177 164 ad4antr ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
178 75 adantr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
179 simp-4r ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) )
180 simpr ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) )
181 70 71 134 178 179 180 homfeqval ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) = ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) )
182 166 ad4antr ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
183 2 ad7antr ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
184 167 ad4antr ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) )
185 169 ad4antr ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) )
186 simplr ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) )
187 simpllr ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) )
188 simpr ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) )
189 70 71 72 73 182 183 184 185 186 187 188 comfeqval ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) = ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) )
190 189 oveq1d ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) )
191 79 ad4antr ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) )
192 simp-4r ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) )
193 70 71 72 73 182 183 191 184 185 192 187 comfeqval ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) )
194 193 oveq2d ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) )
195 190 194 eqeq12d ( ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) )
196 181 195 raleqbidva ( ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) )
197 177 196 raleqbidva ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) )
198 176 197 anbi12d ( ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) )
199 171 198 raleqbidva ( ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) )
200 168 199 raleqbidva ( ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) )
201 165 200 raleqbidva ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) )
202 164 201 raleqbidva ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) )
203 163 202 anbi12d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) )
204 133 203 raleqbidva ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) )
205 132 204 bitrd ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) )
206 70 71 72 iscat ( 𝐶𝑉 → ( 𝐶 ∈ Cat ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
207 3 206 syl ( 𝜑 → ( 𝐶 ∈ Cat ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐶 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) ) ) )
208 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
209 208 134 73 iscat ( 𝐷𝑊 → ( 𝐷 ∈ Cat ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) )
210 4 209 syl ( 𝜑 → ( 𝐷 ∈ Cat ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ( ∃ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑥 ) ( 𝑔 ( ⟨ 𝑦 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ( 𝑓 ( ⟨ 𝑥 , 𝑥 ⟩ ( comp ‘ 𝐷 ) 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐷 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑧 ) ∧ ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ∀ ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( ( ⟨ 𝑥 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) ) ) ) ) )
211 205 207 210 3bitr4d ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) )