| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catpropd.1 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 2 |
|
catpropd.2 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 3 |
|
catpropd.3 |
|- ( ph -> C e. V ) |
| 4 |
|
catpropd.4 |
|- ( ph -> D e. W ) |
| 5 |
|
simpl |
|- ( ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 6 |
5
|
2ralimi |
|- ( A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) -> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 7 |
6
|
2ralimi |
|- ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) -> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 8 |
7
|
adantl |
|- ( ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) -> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 9 |
8
|
ralimi |
|- ( A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 10 |
9
|
a1i |
|- ( ph -> ( A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) |
| 11 |
|
simpl |
|- ( ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 12 |
11
|
2ralimi |
|- ( A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) -> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 13 |
12
|
2ralimi |
|- ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) -> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 14 |
13
|
adantl |
|- ( ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) -> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 15 |
14
|
ralimi |
|- ( A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 16 |
15
|
a1i |
|- ( ph -> ( A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) |
| 17 |
|
nfra1 |
|- F/ y A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) |
| 18 |
|
nfv |
|- F/ x A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) |
| 19 |
|
nfra1 |
|- F/ z A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) |
| 20 |
|
nfv |
|- F/ y A. w e. ( Base ` C ) A. g e. ( x ( Hom ` C ) z ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) |
| 21 |
|
nfra1 |
|- F/ g A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) |
| 22 |
|
nfv |
|- F/ f A. h e. ( y ( Hom ` C ) z ) ( h ( <. x , y >. ( comp ` C ) z ) g ) e. ( x ( Hom ` C ) z ) |
| 23 |
|
oveq1 |
|- ( g = h -> ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( h ( <. x , y >. ( comp ` C ) z ) f ) ) |
| 24 |
23
|
eleq1d |
|- ( g = h -> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> ( h ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) |
| 25 |
24
|
cbvralvw |
|- ( A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> A. h e. ( y ( Hom ` C ) z ) ( h ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 26 |
|
oveq2 |
|- ( f = g -> ( h ( <. x , y >. ( comp ` C ) z ) f ) = ( h ( <. x , y >. ( comp ` C ) z ) g ) ) |
| 27 |
26
|
eleq1d |
|- ( f = g -> ( ( h ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> ( h ( <. x , y >. ( comp ` C ) z ) g ) e. ( x ( Hom ` C ) z ) ) ) |
| 28 |
27
|
ralbidv |
|- ( f = g -> ( A. h e. ( y ( Hom ` C ) z ) ( h ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> A. h e. ( y ( Hom ` C ) z ) ( h ( <. x , y >. ( comp ` C ) z ) g ) e. ( x ( Hom ` C ) z ) ) ) |
| 29 |
25 28
|
bitrid |
|- ( f = g -> ( A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> A. h e. ( y ( Hom ` C ) z ) ( h ( <. x , y >. ( comp ` C ) z ) g ) e. ( x ( Hom ` C ) z ) ) ) |
| 30 |
21 22 29
|
cbvralw |
|- ( A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> A. g e. ( x ( Hom ` C ) y ) A. h e. ( y ( Hom ` C ) z ) ( h ( <. x , y >. ( comp ` C ) z ) g ) e. ( x ( Hom ` C ) z ) ) |
| 31 |
|
oveq2 |
|- ( z = w -> ( y ( Hom ` C ) z ) = ( y ( Hom ` C ) w ) ) |
| 32 |
|
oveq2 |
|- ( z = w -> ( <. x , y >. ( comp ` C ) z ) = ( <. x , y >. ( comp ` C ) w ) ) |
| 33 |
32
|
oveqd |
|- ( z = w -> ( h ( <. x , y >. ( comp ` C ) z ) g ) = ( h ( <. x , y >. ( comp ` C ) w ) g ) ) |
| 34 |
|
oveq2 |
|- ( z = w -> ( x ( Hom ` C ) z ) = ( x ( Hom ` C ) w ) ) |
| 35 |
33 34
|
eleq12d |
|- ( z = w -> ( ( h ( <. x , y >. ( comp ` C ) z ) g ) e. ( x ( Hom ` C ) z ) <-> ( h ( <. x , y >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) ) ) |
| 36 |
31 35
|
raleqbidv |
|- ( z = w -> ( A. h e. ( y ( Hom ` C ) z ) ( h ( <. x , y >. ( comp ` C ) z ) g ) e. ( x ( Hom ` C ) z ) <-> A. h e. ( y ( Hom ` C ) w ) ( h ( <. x , y >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) ) ) |
| 37 |
36
|
ralbidv |
|- ( z = w -> ( A. g e. ( x ( Hom ` C ) y ) A. h e. ( y ( Hom ` C ) z ) ( h ( <. x , y >. ( comp ` C ) z ) g ) e. ( x ( Hom ` C ) z ) <-> A. g e. ( x ( Hom ` C ) y ) A. h e. ( y ( Hom ` C ) w ) ( h ( <. x , y >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) ) ) |
| 38 |
30 37
|
bitrid |
|- ( z = w -> ( A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> A. g e. ( x ( Hom ` C ) y ) A. h e. ( y ( Hom ` C ) w ) ( h ( <. x , y >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) ) ) |
| 39 |
38
|
cbvralvw |
|- ( A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> A. w e. ( Base ` C ) A. g e. ( x ( Hom ` C ) y ) A. h e. ( y ( Hom ` C ) w ) ( h ( <. x , y >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) ) |
| 40 |
|
oveq2 |
|- ( y = z -> ( x ( Hom ` C ) y ) = ( x ( Hom ` C ) z ) ) |
| 41 |
|
oveq1 |
|- ( y = z -> ( y ( Hom ` C ) w ) = ( z ( Hom ` C ) w ) ) |
| 42 |
|
opeq2 |
|- ( y = z -> <. x , y >. = <. x , z >. ) |
| 43 |
42
|
oveq1d |
|- ( y = z -> ( <. x , y >. ( comp ` C ) w ) = ( <. x , z >. ( comp ` C ) w ) ) |
| 44 |
43
|
oveqd |
|- ( y = z -> ( h ( <. x , y >. ( comp ` C ) w ) g ) = ( h ( <. x , z >. ( comp ` C ) w ) g ) ) |
| 45 |
44
|
eleq1d |
|- ( y = z -> ( ( h ( <. x , y >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) <-> ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) ) ) |
| 46 |
41 45
|
raleqbidv |
|- ( y = z -> ( A. h e. ( y ( Hom ` C ) w ) ( h ( <. x , y >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) <-> A. h e. ( z ( Hom ` C ) w ) ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) ) ) |
| 47 |
40 46
|
raleqbidv |
|- ( y = z -> ( A. g e. ( x ( Hom ` C ) y ) A. h e. ( y ( Hom ` C ) w ) ( h ( <. x , y >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) <-> A. g e. ( x ( Hom ` C ) z ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) ) ) |
| 48 |
47
|
ralbidv |
|- ( y = z -> ( A. w e. ( Base ` C ) A. g e. ( x ( Hom ` C ) y ) A. h e. ( y ( Hom ` C ) w ) ( h ( <. x , y >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) <-> A. w e. ( Base ` C ) A. g e. ( x ( Hom ` C ) z ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) ) ) |
| 49 |
39 48
|
bitrid |
|- ( y = z -> ( A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> A. w e. ( Base ` C ) A. g e. ( x ( Hom ` C ) z ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) ) ) |
| 50 |
19 20 49
|
cbvralw |
|- ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> A. z e. ( Base ` C ) A. w e. ( Base ` C ) A. g e. ( x ( Hom ` C ) z ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) ) |
| 51 |
|
oveq1 |
|- ( x = y -> ( x ( Hom ` C ) z ) = ( y ( Hom ` C ) z ) ) |
| 52 |
|
opeq1 |
|- ( x = y -> <. x , z >. = <. y , z >. ) |
| 53 |
52
|
oveq1d |
|- ( x = y -> ( <. x , z >. ( comp ` C ) w ) = ( <. y , z >. ( comp ` C ) w ) ) |
| 54 |
53
|
oveqd |
|- ( x = y -> ( h ( <. x , z >. ( comp ` C ) w ) g ) = ( h ( <. y , z >. ( comp ` C ) w ) g ) ) |
| 55 |
|
oveq1 |
|- ( x = y -> ( x ( Hom ` C ) w ) = ( y ( Hom ` C ) w ) ) |
| 56 |
54 55
|
eleq12d |
|- ( x = y -> ( ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) <-> ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) ) |
| 57 |
56
|
ralbidv |
|- ( x = y -> ( A. h e. ( z ( Hom ` C ) w ) ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) <-> A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) ) |
| 58 |
51 57
|
raleqbidv |
|- ( x = y -> ( A. g e. ( x ( Hom ` C ) z ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) <-> A. g e. ( y ( Hom ` C ) z ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) ) |
| 59 |
58
|
ralbidv |
|- ( x = y -> ( A. w e. ( Base ` C ) A. g e. ( x ( Hom ` C ) z ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) <-> A. w e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) ) |
| 60 |
|
ralcom |
|- ( A. w e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) <-> A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) |
| 61 |
59 60
|
bitrdi |
|- ( x = y -> ( A. w e. ( Base ` C ) A. g e. ( x ( Hom ` C ) z ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) <-> A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) ) |
| 62 |
61
|
ralbidv |
|- ( x = y -> ( A. z e. ( Base ` C ) A. w e. ( Base ` C ) A. g e. ( x ( Hom ` C ) z ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. x , z >. ( comp ` C ) w ) g ) e. ( x ( Hom ` C ) w ) <-> A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) ) |
| 63 |
50 62
|
bitrid |
|- ( x = y -> ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) ) |
| 64 |
17 18 63
|
cbvralw |
|- ( A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) |
| 65 |
64
|
biimpi |
|- ( A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) |
| 66 |
65
|
ancri |
|- ( A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) |
| 67 |
|
r19.26 |
|- ( A. y e. ( Base ` C ) ( A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) <-> ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) |
| 68 |
|
r19.26 |
|- ( A. z e. ( Base ` C ) ( A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) <-> ( A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) |
| 69 |
|
r19.26 |
|- ( A. g e. ( y ( Hom ` C ) z ) ( A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) <-> ( A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) |
| 70 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 71 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 72 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 73 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 74 |
1
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 75 |
74
|
ad4antr |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 76 |
75
|
ad4antr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 77 |
2
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 78 |
77
|
ad4antr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 79 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
| 80 |
79
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> x e. ( Base ` C ) ) |
| 81 |
80
|
ad4antr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> x e. ( Base ` C ) ) |
| 82 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> y e. ( Base ` C ) ) |
| 83 |
82
|
ad4antr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> y e. ( Base ` C ) ) |
| 84 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> w e. ( Base ` C ) ) |
| 85 |
|
simplr |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 86 |
85
|
ad4antr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 87 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) |
| 88 |
70 71 72 73 76 78 81 83 84 86 87
|
comfeqval |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) ) |
| 89 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> z e. ( Base ` C ) ) |
| 90 |
89
|
ad4antr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> z e. ( Base ` C ) ) |
| 91 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 92 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> h e. ( z ( Hom ` C ) w ) ) |
| 93 |
70 71 72 73 76 78 81 90 84 91 92
|
comfeqval |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) |
| 94 |
88 93
|
eqeq12d |
|- ( ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) |
| 95 |
94
|
ex |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) -> ( ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) |
| 96 |
95
|
ralimdva |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) -> ( A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) -> A. h e. ( z ( Hom ` C ) w ) ( ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) |
| 97 |
|
ralbi |
|- ( A. h e. ( z ( Hom ` C ) w ) ( ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) -> ( A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) |
| 98 |
96 97
|
syl6 |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) -> ( A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) -> ( A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) |
| 99 |
98
|
ralimdva |
|- ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> ( A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) -> A. w e. ( Base ` C ) ( A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) |
| 100 |
99
|
impancom |
|- ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> A. w e. ( Base ` C ) ( A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) |
| 101 |
100
|
impr |
|- ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) -> A. w e. ( Base ` C ) ( A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) |
| 102 |
|
ralbi |
|- ( A. w e. ( Base ` C ) ( A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) -> ( A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) |
| 103 |
101 102
|
syl |
|- ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) -> ( A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) |
| 104 |
103
|
anbi2d |
|- ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ ( A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) -> ( ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) |
| 105 |
104
|
ex |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( ( A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> ( ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 106 |
105
|
ralimdva |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( A. g e. ( y ( Hom ` C ) z ) ( A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> A. g e. ( y ( Hom ` C ) z ) ( ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 107 |
69 106
|
biimtrrid |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> A. g e. ( y ( Hom ` C ) z ) ( ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 108 |
107
|
expdimp |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> A. g e. ( y ( Hom ` C ) z ) ( ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 109 |
|
ralbi |
|- ( A. g e. ( y ( Hom ` C ) z ) ( ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) -> ( A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) |
| 110 |
108 109
|
syl6 |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> ( A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 111 |
110
|
an32s |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> ( A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 112 |
111
|
ralimdva |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> A. f e. ( x ( Hom ` C ) y ) ( A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 113 |
|
ralbi |
|- ( A. f e. ( x ( Hom ` C ) y ) ( A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) -> ( A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) |
| 114 |
112 113
|
syl6 |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> ( A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 115 |
114
|
expimpd |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) -> ( ( A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> ( A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 116 |
115
|
ralimdva |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) -> ( A. z e. ( Base ` C ) ( A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> A. z e. ( Base ` C ) ( A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 117 |
|
ralbi |
|- ( A. z e. ( Base ` C ) ( A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) -> ( A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) |
| 118 |
116 117
|
syl6 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) -> ( A. z e. ( Base ` C ) ( A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> ( A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 119 |
68 118
|
biimtrrid |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) -> ( ( A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> ( A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 120 |
119
|
ralimdva |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( A. y e. ( Base ` C ) ( A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> A. y e. ( Base ` C ) ( A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 121 |
|
ralbi |
|- ( A. y e. ( Base ` C ) ( A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) -> ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) |
| 122 |
120 121
|
syl6 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( A. y e. ( Base ` C ) ( A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 123 |
67 122
|
biimtrrid |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 124 |
123
|
imp |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) -> ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) |
| 125 |
124
|
an4s |
|- ( ( ( ph /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) /\ ( x e. ( Base ` C ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) -> ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) |
| 126 |
125
|
anbi2d |
|- ( ( ( ph /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) /\ ( x e. ( Base ` C ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) ) -> ( ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) <-> ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 127 |
126
|
expr |
|- ( ( ( ph /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) /\ x e. ( Base ` C ) ) -> ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> ( ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) <-> ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) ) |
| 128 |
127
|
ralimdva |
|- ( ( ph /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) ) -> ( A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> A. x e. ( Base ` C ) ( ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) <-> ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) ) |
| 129 |
128
|
expimpd |
|- ( ph -> ( ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. g e. ( y ( Hom ` C ) z ) A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( h ( <. y , z >. ( comp ` C ) w ) g ) e. ( y ( Hom ` C ) w ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) -> A. x e. ( Base ` C ) ( ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) <-> ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) ) |
| 130 |
|
ralbi |
|- ( A. x e. ( Base ` C ) ( ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) <-> ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) -> ( A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) <-> A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 131 |
66 129 130
|
syl56 |
|- ( ph -> ( A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) -> ( A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) <-> A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) ) |
| 132 |
10 16 131
|
pm5.21ndd |
|- ( ph -> ( A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) <-> A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 133 |
1
|
homfeqbas |
|- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 134 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 135 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
| 136 |
70 71 134 74 135 135
|
homfeqval |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( x ( Hom ` C ) x ) = ( x ( Hom ` D ) x ) ) |
| 137 |
133
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 138 |
74
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 139 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) -> y e. ( Base ` C ) ) |
| 140 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
| 141 |
70 71 134 138 139 140
|
homfeqval |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) -> ( y ( Hom ` C ) x ) = ( y ( Hom ` D ) x ) ) |
| 142 |
1
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 143 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 144 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> y e. ( Base ` C ) ) |
| 145 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> x e. ( Base ` C ) ) |
| 146 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> f e. ( y ( Hom ` C ) x ) ) |
| 147 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> g e. ( x ( Hom ` C ) x ) ) |
| 148 |
70 71 72 73 142 143 144 145 145 146 147
|
comfeqval |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( g ( <. y , x >. ( comp ` C ) x ) f ) = ( g ( <. y , x >. ( comp ` D ) x ) f ) ) |
| 149 |
148
|
eqeq1d |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( g ( <. y , x >. ( comp ` C ) x ) f ) = f <-> ( g ( <. y , x >. ( comp ` D ) x ) f ) = f ) ) |
| 150 |
141 149
|
raleqbidva |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) -> ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f <-> A. f e. ( y ( Hom ` D ) x ) ( g ( <. y , x >. ( comp ` D ) x ) f ) = f ) ) |
| 151 |
70 71 134 138 140 139
|
homfeqval |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) -> ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) |
| 152 |
1
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 153 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 154 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> x e. ( Base ` C ) ) |
| 155 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> y e. ( Base ` C ) ) |
| 156 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> g e. ( x ( Hom ` C ) x ) ) |
| 157 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 158 |
70 71 72 73 152 153 154 154 155 156 157
|
comfeqval |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( f ( <. x , x >. ( comp ` C ) y ) g ) = ( f ( <. x , x >. ( comp ` D ) y ) g ) ) |
| 159 |
158
|
eqeq1d |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( ( f ( <. x , x >. ( comp ` C ) y ) g ) = f <-> ( f ( <. x , x >. ( comp ` D ) y ) g ) = f ) ) |
| 160 |
151 159
|
raleqbidva |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) -> ( A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f <-> A. f e. ( x ( Hom ` D ) y ) ( f ( <. x , x >. ( comp ` D ) y ) g ) = f ) ) |
| 161 |
150 160
|
anbi12d |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) /\ y e. ( Base ` C ) ) -> ( ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) <-> ( A. f e. ( y ( Hom ` D ) x ) ( g ( <. y , x >. ( comp ` D ) x ) f ) = f /\ A. f e. ( x ( Hom ` D ) y ) ( f ( <. x , x >. ( comp ` D ) y ) g ) = f ) ) ) |
| 162 |
137 161
|
raleqbidva |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ g e. ( x ( Hom ` C ) x ) ) -> ( A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) <-> A. y e. ( Base ` D ) ( A. f e. ( y ( Hom ` D ) x ) ( g ( <. y , x >. ( comp ` D ) x ) f ) = f /\ A. f e. ( x ( Hom ` D ) y ) ( f ( <. x , x >. ( comp ` D ) y ) g ) = f ) ) ) |
| 163 |
136 162
|
rexeqbidva |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) <-> E. g e. ( x ( Hom ` D ) x ) A. y e. ( Base ` D ) ( A. f e. ( y ( Hom ` D ) x ) ( g ( <. y , x >. ( comp ` D ) x ) f ) = f /\ A. f e. ( x ( Hom ` D ) y ) ( f ( <. x , x >. ( comp ` D ) y ) g ) = f ) ) ) |
| 164 |
133
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 165 |
164
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 166 |
74
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 167 |
|
simplr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) -> y e. ( Base ` C ) ) |
| 168 |
70 71 134 166 79 167
|
homfeqval |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) -> ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) |
| 169 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) -> z e. ( Base ` C ) ) |
| 170 |
70 71 134 166 167 169
|
homfeqval |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) -> ( y ( Hom ` C ) z ) = ( y ( Hom ` D ) z ) ) |
| 171 |
170
|
adantr |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( y ( Hom ` C ) z ) = ( y ( Hom ` D ) z ) ) |
| 172 |
|
simpr |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> g e. ( y ( Hom ` C ) z ) ) |
| 173 |
70 71 72 73 75 77 80 82 89 85 172
|
comfeqval |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` D ) z ) f ) ) |
| 174 |
70 71 134 166 79 169
|
homfeqval |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) -> ( x ( Hom ` C ) z ) = ( x ( Hom ` D ) z ) ) |
| 175 |
174
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( x ( Hom ` C ) z ) = ( x ( Hom ` D ) z ) ) |
| 176 |
173 175
|
eleq12d |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) <-> ( g ( <. x , y >. ( comp ` D ) z ) f ) e. ( x ( Hom ` D ) z ) ) ) |
| 177 |
164
|
ad4antr |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 178 |
75
|
adantr |
|- ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 179 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) -> z e. ( Base ` C ) ) |
| 180 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) -> w e. ( Base ` C ) ) |
| 181 |
70 71 134 178 179 180
|
homfeqval |
|- ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) -> ( z ( Hom ` C ) w ) = ( z ( Hom ` D ) w ) ) |
| 182 |
166
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 183 |
2
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 184 |
167
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> y e. ( Base ` C ) ) |
| 185 |
169
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> z e. ( Base ` C ) ) |
| 186 |
|
simplr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> w e. ( Base ` C ) ) |
| 187 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> g e. ( y ( Hom ` C ) z ) ) |
| 188 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> h e. ( z ( Hom ` C ) w ) ) |
| 189 |
70 71 72 73 182 183 184 185 186 187 188
|
comfeqval |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( h ( <. y , z >. ( comp ` C ) w ) g ) = ( h ( <. y , z >. ( comp ` D ) w ) g ) ) |
| 190 |
189
|
oveq1d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) ) |
| 191 |
79
|
ad4antr |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> x e. ( Base ` C ) ) |
| 192 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 193 |
70 71 72 73 182 183 191 184 185 192 187
|
comfeqval |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` D ) z ) f ) ) |
| 194 |
193
|
oveq2d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) |
| 195 |
190 194
|
eqeq12d |
|- ( ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) |
| 196 |
181 195
|
raleqbidva |
|- ( ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) /\ w e. ( Base ` C ) ) -> ( A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> A. h e. ( z ( Hom ` D ) w ) ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) |
| 197 |
177 196
|
raleqbidva |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) <-> A. w e. ( Base ` D ) A. h e. ( z ( Hom ` D ) w ) ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) |
| 198 |
176 197
|
anbi12d |
|- ( ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> ( ( g ( <. x , y >. ( comp ` D ) z ) f ) e. ( x ( Hom ` D ) z ) /\ A. w e. ( Base ` D ) A. h e. ( z ( Hom ` D ) w ) ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) ) |
| 199 |
171 198
|
raleqbidva |
|- ( ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) /\ f e. ( x ( Hom ` C ) y ) ) -> ( A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. g e. ( y ( Hom ` D ) z ) ( ( g ( <. x , y >. ( comp ` D ) z ) f ) e. ( x ( Hom ` D ) z ) /\ A. w e. ( Base ` D ) A. h e. ( z ( Hom ` D ) w ) ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) ) |
| 200 |
168 199
|
raleqbidva |
|- ( ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) /\ z e. ( Base ` C ) ) -> ( A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( ( g ( <. x , y >. ( comp ` D ) z ) f ) e. ( x ( Hom ` D ) z ) /\ A. w e. ( Base ` D ) A. h e. ( z ( Hom ` D ) w ) ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) ) |
| 201 |
165 200
|
raleqbidva |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` C ) ) -> ( A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. z e. ( Base ` D ) A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( ( g ( <. x , y >. ( comp ` D ) z ) f ) e. ( x ( Hom ` D ) z ) /\ A. w e. ( Base ` D ) A. h e. ( z ( Hom ` D ) w ) ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) ) |
| 202 |
164 201
|
raleqbidva |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) <-> A. y e. ( Base ` D ) A. z e. ( Base ` D ) A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( ( g ( <. x , y >. ( comp ` D ) z ) f ) e. ( x ( Hom ` D ) z ) /\ A. w e. ( Base ` D ) A. h e. ( z ( Hom ` D ) w ) ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) ) |
| 203 |
163 202
|
anbi12d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) <-> ( E. g e. ( x ( Hom ` D ) x ) A. y e. ( Base ` D ) ( A. f e. ( y ( Hom ` D ) x ) ( g ( <. y , x >. ( comp ` D ) x ) f ) = f /\ A. f e. ( x ( Hom ` D ) y ) ( f ( <. x , x >. ( comp ` D ) y ) g ) = f ) /\ A. y e. ( Base ` D ) A. z e. ( Base ` D ) A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( ( g ( <. x , y >. ( comp ` D ) z ) f ) e. ( x ( Hom ` D ) z ) /\ A. w e. ( Base ` D ) A. h e. ( z ( Hom ` D ) w ) ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) ) ) |
| 204 |
133 203
|
raleqbidva |
|- ( ph -> ( A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) <-> A. x e. ( Base ` D ) ( E. g e. ( x ( Hom ` D ) x ) A. y e. ( Base ` D ) ( A. f e. ( y ( Hom ` D ) x ) ( g ( <. y , x >. ( comp ` D ) x ) f ) = f /\ A. f e. ( x ( Hom ` D ) y ) ( f ( <. x , x >. ( comp ` D ) y ) g ) = f ) /\ A. y e. ( Base ` D ) A. z e. ( Base ` D ) A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( ( g ( <. x , y >. ( comp ` D ) z ) f ) e. ( x ( Hom ` D ) z ) /\ A. w e. ( Base ` D ) A. h e. ( z ( Hom ` D ) w ) ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) ) ) |
| 205 |
132 204
|
bitrd |
|- ( ph -> ( A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) <-> A. x e. ( Base ` D ) ( E. g e. ( x ( Hom ` D ) x ) A. y e. ( Base ` D ) ( A. f e. ( y ( Hom ` D ) x ) ( g ( <. y , x >. ( comp ` D ) x ) f ) = f /\ A. f e. ( x ( Hom ` D ) y ) ( f ( <. x , x >. ( comp ` D ) y ) g ) = f ) /\ A. y e. ( Base ` D ) A. z e. ( Base ` D ) A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( ( g ( <. x , y >. ( comp ` D ) z ) f ) e. ( x ( Hom ` D ) z ) /\ A. w e. ( Base ` D ) A. h e. ( z ( Hom ` D ) w ) ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) ) ) |
| 206 |
70 71 72
|
iscat |
|- ( C e. V -> ( C e. Cat <-> A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 207 |
3 206
|
syl |
|- ( ph -> ( C e. Cat <-> A. x e. ( Base ` C ) ( E. g e. ( x ( Hom ` C ) x ) A. y e. ( Base ` C ) ( A. f e. ( y ( Hom ` C ) x ) ( g ( <. y , x >. ( comp ` C ) x ) f ) = f /\ A. f e. ( x ( Hom ` C ) y ) ( f ( <. x , x >. ( comp ` C ) y ) g ) = f ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) A. g e. ( y ( Hom ` C ) z ) ( ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) /\ A. w e. ( Base ` C ) A. h e. ( z ( Hom ` C ) w ) ( ( h ( <. y , z >. ( comp ` C ) w ) g ) ( <. x , y >. ( comp ` C ) w ) f ) = ( h ( <. x , z >. ( comp ` C ) w ) ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) ) ) ) |
| 208 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 209 |
208 134 73
|
iscat |
|- ( D e. W -> ( D e. Cat <-> A. x e. ( Base ` D ) ( E. g e. ( x ( Hom ` D ) x ) A. y e. ( Base ` D ) ( A. f e. ( y ( Hom ` D ) x ) ( g ( <. y , x >. ( comp ` D ) x ) f ) = f /\ A. f e. ( x ( Hom ` D ) y ) ( f ( <. x , x >. ( comp ` D ) y ) g ) = f ) /\ A. y e. ( Base ` D ) A. z e. ( Base ` D ) A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( ( g ( <. x , y >. ( comp ` D ) z ) f ) e. ( x ( Hom ` D ) z ) /\ A. w e. ( Base ` D ) A. h e. ( z ( Hom ` D ) w ) ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) ) ) |
| 210 |
4 209
|
syl |
|- ( ph -> ( D e. Cat <-> A. x e. ( Base ` D ) ( E. g e. ( x ( Hom ` D ) x ) A. y e. ( Base ` D ) ( A. f e. ( y ( Hom ` D ) x ) ( g ( <. y , x >. ( comp ` D ) x ) f ) = f /\ A. f e. ( x ( Hom ` D ) y ) ( f ( <. x , x >. ( comp ` D ) y ) g ) = f ) /\ A. y e. ( Base ` D ) A. z e. ( Base ` D ) A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( ( g ( <. x , y >. ( comp ` D ) z ) f ) e. ( x ( Hom ` D ) z ) /\ A. w e. ( Base ` D ) A. h e. ( z ( Hom ` D ) w ) ( ( h ( <. y , z >. ( comp ` D ) w ) g ) ( <. x , y >. ( comp ` D ) w ) f ) = ( h ( <. x , z >. ( comp ` D ) w ) ( g ( <. x , y >. ( comp ` D ) z ) f ) ) ) ) ) ) |
| 211 |
205 207 210
|
3bitr4d |
|- ( ph -> ( C e. Cat <-> D e. Cat ) ) |