Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqbidva.1 | |- ( ph -> A = B ) |
|
| raleqbidva.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
||
| Assertion | rexeqbidva | |- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidva.1 | |- ( ph -> A = B ) |
|
| 2 | raleqbidva.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
| 3 | 2 | rexbidva | |- ( ph -> ( E. x e. A ps <-> E. x e. A ch ) ) |
| 4 | 1 | rexeqdv | |- ( ph -> ( E. x e. A ch <-> E. x e. B ch ) ) |
| 5 | 3 4 | bitrd | |- ( ph -> ( E. x e. A ps <-> E. x e. B ch ) ) |