| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homfeqval.b |
|- B = ( Base ` C ) |
| 2 |
|
homfeqval.h |
|- H = ( Hom ` C ) |
| 3 |
|
homfeqval.j |
|- J = ( Hom ` D ) |
| 4 |
|
homfeqval.1 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 5 |
|
homfeqval.x |
|- ( ph -> X e. B ) |
| 6 |
|
homfeqval.y |
|- ( ph -> Y e. B ) |
| 7 |
4
|
oveqd |
|- ( ph -> ( X ( Homf ` C ) Y ) = ( X ( Homf ` D ) Y ) ) |
| 8 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
| 9 |
8 1 2 5 6
|
homfval |
|- ( ph -> ( X ( Homf ` C ) Y ) = ( X H Y ) ) |
| 10 |
|
eqid |
|- ( Homf ` D ) = ( Homf ` D ) |
| 11 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 12 |
4
|
homfeqbas |
|- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 13 |
1 12
|
eqtrid |
|- ( ph -> B = ( Base ` D ) ) |
| 14 |
5 13
|
eleqtrd |
|- ( ph -> X e. ( Base ` D ) ) |
| 15 |
6 13
|
eleqtrd |
|- ( ph -> Y e. ( Base ` D ) ) |
| 16 |
10 11 3 14 15
|
homfval |
|- ( ph -> ( X ( Homf ` D ) Y ) = ( X J Y ) ) |
| 17 |
7 9 16
|
3eqtr3d |
|- ( ph -> ( X H Y ) = ( X J Y ) ) |