Metamath Proof Explorer


Theorem homfeqval

Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses homfeqval.b B=BaseC
homfeqval.h H=HomC
homfeqval.j J=HomD
homfeqval.1 φHom𝑓C=Hom𝑓D
homfeqval.x φXB
homfeqval.y φYB
Assertion homfeqval φXHY=XJY

Proof

Step Hyp Ref Expression
1 homfeqval.b B=BaseC
2 homfeqval.h H=HomC
3 homfeqval.j J=HomD
4 homfeqval.1 φHom𝑓C=Hom𝑓D
5 homfeqval.x φXB
6 homfeqval.y φYB
7 4 oveqd φXHom𝑓CY=XHom𝑓DY
8 eqid Hom𝑓C=Hom𝑓C
9 8 1 2 5 6 homfval φXHom𝑓CY=XHY
10 eqid Hom𝑓D=Hom𝑓D
11 eqid BaseD=BaseD
12 4 homfeqbas φBaseC=BaseD
13 1 12 eqtrid φB=BaseD
14 5 13 eleqtrd φXBaseD
15 6 13 eleqtrd φYBaseD
16 10 11 3 14 15 homfval φXHom𝑓DY=XJY
17 7 9 16 3eqtr3d φXHY=XJY